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1 Introduction

Time dependent backgrounds in gravity and in string theory are of great interest from

the standpoint of the AdS/CFT correspondence [1, 2] and related holographic dualities

between gauge theories and gravity. Time dependent classical gravity backgrounds, in

asymptotically Anti-de-Sitter spacetimes, can potentially provide a fully nonperturbative

description of non-equilibrium phenomena in the strongly coupled dual gauge theories.

Such non-equilibrium physics in field theories arises, most notably, in cosmology and in

heavy ion collisions at RHIC. To understand how gauge/gravity dualities work for such
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processes, it is important to investigate how holography applies in various examples with

explicit time dependence. In this paper we attempt the holographic computation of real

time correlators of the boundary gauge theory dual to the time dependent, asymptotically

locally AdS backgrounds found in [3–7].

The authors of [8] studied the double analytic continuations of vacuum solutions such

as Schwarzschild and Kerr spacetimes providing examples of smooth, time dependent solu-

tions called “bubbles of nothing” [9–11]. These asymptotically flat solutions were general-

ized to asymptotically locally AdS spacetimes in [3, 4], by considering the double analytic

continuations of AdS black holes.1 The bubbles are obtained by analytically continuing

the time coordinate to Euclidean signature t→ iχ where χ is periodically identified, and a

polar angle θ → iτ . In addition, the χ circle has supersymmetry breaking boundary condi-

tions for fermions. The resulting “bubbles” undergo exponential de Sitter expansion (and

contraction). For the asymptotically locally AdS5 × S5 case [4], the conformal boundary

of the geometry is dS3 × S1. The corresponding dual field theory, N = 4 SYM, is thus

formulated on dS3 ×S1 with antiperiodic boundary conditions for the fermions around S1.

Each of the two AdS-Schwarzschild black holes (the small and big black holes) yield an AdS

bubble of nothing solution, only one of which is stable. The bubble of nothing geometries

are vacuum solutions with cosmological horizons [8] and particle creation effects.

It was realized in [5–7] that there is another spacetime with the same AdS asymptotics

as the bubble geometries, with dS3 × S1 conformal boundary. This is the so-called “topo-

logical black hole”2 – a quotient of AdS space obtained by an identification of global AdS5

along a boost [17, 18]. It is the five dimensional analog of the BTZ black hole [19, 20].

The topological AdS black hole can also be obtained by a Wick rotation of thermal AdS

space. As Euclidean thermal AdS space can be unstable to decay to the big AdS black hole

via the first order Hawking-Page transition [21, 22], a similar instability is associated to

the topological AdS black hole. In this case the topological AdS black hole is unstable to

semiclassical decay via the nucleation of an AdS bubble of nothing. The associated bounce

solution is the Euclidean small AdS-Schwarzschild black hole which has a non-conformal

negative mode. The topological black hole becomes unstable only when the radius of the

spatial circle becomes smaller than a critical value (in the Euclidean thermal setup this

is when the temperature exceeds a critical value). Precisely such an instability to decay

to “nothing” was, of course, first noted for flat space times a circle having antiperiodic

boundary conditions for fermions [9].

The two different geometries described above are dual to two different phases of

strongly coupled, large N gauge theory formulated on dS3 × S1. As in the usual thermal

interpretation wherein the field theory lives on S3 × S1, the two phases are distinguished

by the expectation value of the Wilson loop around the S1. In the bubble of nothing phase,

the circle shrinks to zero size in the interior of the geometry and the Wilson loop is non-

zero, indicating the spontaneous breaking of the ZN symmetry of the gauge theory. The

1For the classifications of solutions obtained by analytically continuing black hole solutions, see [12].
2The term “topological AdS black hole” has also been used to refer to black holes with a hyperbolic

horizon having a non-trivial topology. In the AdS/CFT context these have been studied in [13–16] and

references therein.
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topological black hole phase is ZN invariant. Unlike the thermal situation however, the

spontaneous breaking of ZN invariance is not a deconfinement transition since the circle is

a spatial direction and not the thermal circle.

Our primary motivation in this article is to understand how the behaviour of real

time correlators in the two geometries reflects the properties and distinguishes the two

phases of the N = 4 theory on dS3 × S1. Since the de Sitter boundary has its own

cosmological horizon accompanied by a Gibbons-Hawking radiation [23], this should also

be reflected in the properties of the boundary correlation functions. An interesting feature

of both the geometries in question is that infinity is connected, i.e. the asymptotics is

unlike the (AdS-)Schwarzschild black hole whose asymptotics consists of two disconnected

boundaries. This means the Schwinger-Keldysh approach in [24] is not directly applicable.

It would be interesting to understand how to apply that idea and also the recently proposed

prescription of [25, 26] in the present context. Instead we simply use the Son-Starinets

prescription [27–29] to compute real time correlators in the topological AdS black hole

geometry, by requiring infalling boundary conditions at the horizon of the black hole.

We find that in the topological black hole phase, retarded scalar glueball correlators

(homogeneous on spatial S2 slices of dS3) have a simple description in frequency space.

They have an infinite number of poles in the lower half of the complex frequency plane. As

in the case of the BTZ black hole and other well known examples, these poles represent the

black hole quasinormal frequencies [27]. The Green’s functions have imaginary parts and

display features closely resembling thermal physics. These features are naturally associated

to the Gibbons-Hawking temperature due to the cosmological horizon of de Sitter space.

This suggests that the N = 4 theory on dS3 × S1 is in a plasma-like or deconfined state in

the exponentially expanding universe.

We further investigate real time correlators involving spatial spherical harmonics of

conserved R-currents to find whether they exhibit transport properties, i.e., if they relax via

diffusion on the expanding spatial S2 slices of dS3. Applying the Son-Starinets recipe (here

we have to acount for a certain subtlety involving discrete normalizable mode functions in

de Sitter space) we find that the retarded propagator of the R-current does not appear to

relax hydrodynamiccally. This is likely due to the “rapid” expansion of de Sitter space,

the expansion rate of dS3 being of the same order as the Gibbons-Hawking temperature.

The real time correlators are represented in the form of a de Sitter mode expansion, which

allows to identify a natural frequency space correlator. This latter object has isolated

poles in the lower half plane and at the origin, and its imaginary part exhibits the features

characteristic of a thermal state.

When the spatial circle is small (relative to the radius of curvature of dS3), below a

critical value, the topological black hole decays into the AdS bubble of nothing. In this

geometry, correlation functions are not analytically calculable. However, scalar glueball

propagators can be calculated in a WKB approximation. We show that in this approxi-

mation, the correlation functions have an infinite set of isolated poles on the real axis in

the frequency plane. We interpret this naturally as high mass glueball-like bound states of

the field theory. The transition from the topological black hole to the bubble of nothing

by tunelling is interpreted as a hadronization process. A related picture of hadronization

was discussed in [30].
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The paper is organized as follows. In section 2, we review properties of the topological

AdS black hole. In section 3, we perform the detailed holographic computation of retarded

propagators of the spatially homogeneous scalar glueball fields. We also calculate R-current

correlation functions. Section 4 is devoted to a WKB analysis of Green’s functions in the

bubble of nothing phase. We summarize our results in section 5.

2 The topological AdS black hole

The so-called topological black hole of [7, 18] in AdS5 is an orbifold of AdS space, obtained

by an identification of points along the orbit of a Killing vector

ξ =
rχ
RAdS

(x4∂5 + x5∂4) , (2.1)

where rχ is an arbitrary real number and the AdS space is described as the universal

covering of the hyper-surface

− x2
0 + x2

1 + x2
2 + x2

3 + x2
4 − x2

5 = −R2
Ads, (2.2)

RAdS being the AdS radius. In Kruskal-like coordinates which cover the whole spacetime,

the metric has the form

ds2 =
4R2

AdS

(1 − y2)2
dyµdyνηµν +

(1 + y2)2

(1 − y2)2
r2χdχ

2 (2.3)

where χ is a periodic coordinate with period 2π. The four coordinates yµ, (µ = 0, . . . 3)

are non-compact with the Lorentzian norm y2 = yµyνηµν such that −1 < y2 < 1. Locally,

the spacetime is anti-de Sitter with a periodic identification of the χ coordinate,

χ ∼ χ+ 2π. (2.4)

The conformal boundary of the spacetime is approached as y2 → 1, and it is dS3×S1. The

boundary conformal field theory is therefore formulated on a three dimensional de Sitter

space with radius of curvature RAdS times a spatial circle of radius rχ.

The geometry has a horizon at y2 = 0, which is the three dimensional hypercone,

y2
0 = y2

1 + y2
2 + y2

3, (2.5)

and a singularity at y2 = −1. The singularity appears because the region where the Killing

vector has negative norm needs to be excised from the physical spacetime to eliminate

closed timelike curves. The hyperboloid y2 = −1 is a singularity since timelike geodesics

end there and the Killing vector ∂χ generating the orbifold identification has vanishing

norm at y2 = −1. The topology of the spacetime is R
3,1 × S1, in contrast to that of the

AdS-Schwarzschild black hole which has the topology R
1,1 × S3. For this reason, infinity

is connected in this geometry unlike in the usual Schwarzschild black hole which has two

disconnected asymptotic regions.
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Figure 1. The global structure of the topological AdS black hole spacetime. The singularity is the

hyperboloid −y2
0 + yiyi = −1 and the horizon is at the cone y2

0 = yiyi.

Finally, it is possible to rewrite the metric in Schwarzschild-like coordinates

by introducing

Y 2 =
3
∑

i=1

yiyi ;
Y

y0
= coth

(

t

RAdS

)

;
r2

R2
AdS

= 4
(Y 2 − y2

0)

(1 + y2
0 − Y 2)2

(2.6)

These coordinates only cover the region y2 ≥ 0 which is the exterior of the topological

black hole. Locally, the metric takes the form (simply related to eq. (11) of [7] after a

coordinate transformation),

ds2 = R2
AdS

dr2

(r2 +R2
AdS)

+

(

rχ
RAdS

)2

(r2 +R2
AdS)dχ2

+r2
(

− dt2

R2
AdS

+ cosh2

(

t

RAdS

)

dΩ2
2

)

. (2.7)

The Euclidean continuation of the metric yields thermal AdS space due to periodicity of

the χ coordinate. Hence, the topological black hole metric (exterior to the horizon) can

also be obtained following a double Wick rotation of global AdS spacetime and a periodic

identification of the χ coordinate. In the Schwarzschild-like coordinates, the horizon of the

topological black hole is at r = 0. It is clear that each slice of constant r is a dS3 × S1

geometry. This metric, while locally describing AdS space, differs from it globally due to

the identification χ ∼ χ+ 2π. Note also that the spatial S1 remains finite sized at the

horizon, with radius RS1 = rχ.
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It is interesting to see that we can get a better understanding of the geometry in the

vicinity of the singularity at y2 = −1 by zooming in on the the metric (2.3) in this region.

Introducing the coordinates

y0 = (1 − δ) cosh ε , Y = (1 − δ) sinh ε 0 < δ ≪ 1, (2.8)

we find

ds2 ≈ R2
AdS(−dδ2 + dε2 + sinh2 ε dΩ2

2) + r2χδ
2 dχ2, (2.9)

which is the metric for Milne spacetime (in the δ, χ directions).

3 Real time correlators in the topological AdS black hole

We will compute real time correlators in the Yang-Mills theory on the boundary of the

topological AdS5 black hole (TBH) following the recipe of Son and Starinets [27] in the

Schwarzschild-like patch (2.7) of the black hole. Viewing the topological black hole as a

Wick rotation of (Euclidean) thermal AdS space, one expects that such correlators can also

be obtained by an appropriate analytic continuation of Euclidean Yang-Mills correlators

on S3 × S1 in the confined phase (the ZN symmetric phase) with anti-periodic boundary

conditions for fermions. Since the relevant Wick rotation turns the polar angle on S3 into

the time coordinate of de Sitter space, a complete knowledge of the angular dependence

of Euclidean correlators on S3 ×S1would be necessary. However, finite temperature Yang-

Mills correlators on S3 and at strong coupling, have not been calculated explicitly, so we

will not follow the route of analytic continuation. Instead we will directly calculate the

real time correlators using the holographic prescription of Son and Starinets applied to the

topological AdS black hole geometry.

3.1 Scalar wave equation in the topological black hole

To extract field theory correlators, we first need to look for solutions to the wave equation

in the region exterior to the horizon of the topological black hole. It is instructive to write

the metric for the black hole in the Schwarzschild form of [7]

ds2 = R2
AdS

[

dρ2

(ρ2 − 1)
+

(

rχ
RAdS

)2

ρ2dχ2 + (ρ2 − 1)
(

−dτ2 + cosh2 τ dΩ2
2

)

]

, (3.1)

where we have introduced the dimensionless variables

ρ =

√

(r/RAdS)
2 + 1, τ =

t

RAdS
. (3.2)

The conformal boundary of the space is approached as ρ→ ∞ while the horizon is at ρ = 1,

where the coefficient of dτ2 vanishes. The slices with constant ρ are manifestly dS3 × S1.

The scalar fields in this geometry have a natural expansion in terms of harmonics on

the S2 × S1 spatial slices

Φ(ρ, χ, τ,Ω) =
∑

ℓ,m,n

Aℓ m Yℓ m(Ω) einχ

∫

dν

2π
Φn (ν, ρ) Tℓ(ν, τ). (3.3)
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Figure 2. The Schrödinger potential for the topological AdS black hole.

The normal mode expansion above involves spherical harmonics on S2, the discrete Fourier

modes on S1 and Tℓ(ν, τ) which solve the scalar wave equation on dS3:

1

cosh2 τ
∂τ

(

cosh2 τ ∂τTℓ(ν, τ)
)

+
ℓ(ℓ+ 1)

cosh2 τ
Tℓ(ν, τ) = −(ν2 + 1)Tℓ(ν, τ). (3.4)

For every ℓ ∈ Z, the equation has two kinds of solutions that will be relevant for us: i)

normalizable modes labelled by integers −iν = 1, 2, . . . ℓ; and ii) delta-function normalizable

modes labelled by a continuous frequency variable ν ∈ R. We will return to this point when

we discuss R-current correlators. General solutions to this equation can be expressed in

terms of associated Legendre functions

Tℓ(ν, τ) =
1

cosh τ

(

Al P
iν
ℓ (tanh τ) + Bl Q

iν
ℓ (tanh τ)

)

. (3.5)

In the usual approach to quantizing free scalar fields in de Sitter space, the integration

constants Aℓ and Bℓ are determined by the choice of de Sitter vacuum [31–33]. However,

in the present context, the constants will be specified by picking out infalling wave solutions

at the horizon of the topological black hole. These are the holographic boundary conditions

relevant for real time response functions in the strongly coupled field theory on dS3 × S1.

It is useful to see the scalar wave equation in this background recast as a Schrödinger

equation, using Regge-Wheeler type variables

u =
1

2
ln

(

ρ+ 1

ρ− 1

)

or ρ = coth u, (3.6)

and

Ψn =
√

ρ(ρ2 − 1) Φn, (3.7)

Φ being the scalar field in the bulk. In these coordinates, the horizon is approached as

u → ∞ while the conformal boundary is at u = 0. Following the above coordinate and

– 7 –
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field redefinitions, the Schrödinger wave equation in the TBH geometry is

− d2

du2
Ψn(ν, u) + Vn(u) Ψn(ν, u) = ν2 Ψn(ν, u), (3.8)

Vn(u) =

((

MRAdS

)2

+
15

4

)

1

sinh2 u
+

(

1

4
+
R2

AdS

r2χ
n2

)

1

cosh2 u
. (3.9)

Here, Ψn = Φn

√

ρ(ρ2 − 1) and we have allowed for a generic non-zero mass M since we

will eventually be interested both in the massless and massive cases. As expected for AdS

black holes, the potential decays exponentially near the horizon u→ ∞, while blowing up

near the boundary at u→ 0. In the near horizon region where the potential vanishes, the

solutions with ν > 0 are travelling waves and there is a natural choice of incoming and

outgoing plane wave solutions. For any n and M , the equation has analytically tractable

solutions in terms of hypergeometric functions. We will use these to calculate the retarded

Green’s functions for the boundary gauge theory (i.e., N = 4 SYM) at strong coupling

on dS3 × S1.

Although analytical solutions exist for all non-zero n and M , we will restrict attention,

for simplicity, to two special cases: i) n 6= 0 and MRAdS = 0; ii) n = 0 and MRAdS 6=
0. In each of these two cases the radial equation is solved by two linearly independent

hypergeometric functions:

M = 0; n 6= 0

Φn(ν, ρ) = C1 ρ
−i n RAdS/rχ × (3.10)

(ρ2−1)−i ν
2
− 1

2 2F1

(

−1

2
− i

2

(

ν+n
RAdS

rχ

)

,
3

2
− i

2

(

ν+n
RAdS

rχ

)

; 1 − in
RAdS

rχ
; ρ2

)

+C2 ρ
i n RAdS/rχ ×

(ρ2−1)−i ν
2
− 1

2 2F1

(

−1

2
− i

2

(

ν−n RAdS

rχ

)

,
3

2
− i

2

(

ν−n RAdS

rχ

)

; 1 + in
RAdS

rχ
; ρ2

)

.

Similarly, for massive fields with n = 0, the two linearly independent solutions are

M 6= 0; n = 0

Φ0(ν, ρ) = C1(ρ
2 − 1)−

1
2
(4−∆)

2F1

(

1

2
(3−∆) − 1

2
iν,

1

2
(3−∆) +

1

2
iν; 3−∆; −(ρ2−1)−1

)

+C2 (ρ2 − 1)−
1
2
∆

2F1

(

1

2
(∆ − 1)− 1

2
iν,

1

2
(∆−1) +

1

2
iν; ∆−1; −(ρ2−1)−1

)

∆ = 2 +
√

4 + (MRAdS)2.

The correct linear combination, relevant for the holographic computation of correlators, is

picked by applying the requirement of purely infalling waves at the horizon of the topolog-

ical black hole at ρ ≈ 1.

3.2 Scalar glueball correlator

As argued in [4, 7], the topological black hole in AdS space is automatically a solution to

the Type IIB supergravity equations of motion, since it can be obtained via a double Wick

– 8 –
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rotation (and an identification) of AdS5 × S5. The N = 4 supersymmetric Yang-Mills

theory on the dS3 × S1 conformal boundary of the topological black hole, has two SO(6)

singlet, scalar glueball fields

G(~x, t) = TrFµνF
µν ; G̃(~x, t) = TrFµν F̃

µν . (3.11)

These are dual to the dilaton and the RR-scalar in the Type IIB theory on the bulk

spacetime and both solve the massless (corresponding to ∆ = 4 operators on the boundary)

scalar wave equation in the topological black hole geometry. The retarded propagators

for the scalar glueball fields are known on R
3,1 at weak coupling both at zero and finite

temperature [34]. Since the operator is chiral primary in the N = 4 theory, at zero

temperature its propagator on R
3,1 receives no quantum corrections and the strong coupling

results from supergravity are in exact agreement with those of the free field theory. At

finite temperature, however, when supersymmetry is broken, strong and weak coupling

results on R
3,1 differ [27, 34]. Computations of the glueball correlator also exist in the

free N = 4 theory at finite temperature and on a spatial S3, both in the confined and

deconfined phases [34]. Their strong coupling counterparts have not been determined.

The present case, with the field theory on dS3 × S1, is intriguing for the following

reasons. First, there is the lack of supersymmetry, due to antiperiodic boundary conditions

for fermions around the spatial S1. Secondly, the boundary field theory sees a cosmological

horizon on dS3 accompanied by its thermal bath. It would be interesting to observe the

emergence of the boundary Gibbons-Hawking temperature from a holographic calculation

of its correlators at strong coupling. Finally, when the radius of the boundary S1 decreases

below a critical value, rχ/RAdS ≤ 1
2
√

2
, the topological black hole decays via a bounce to the

small “AdS bubble of nothing”. We would like to understand how boundary field theory

correlators at strong coupling on dS3 × S1 change across this transition. The transition

from the topological black hole to the Bubble of Nothing is a ZN breaking transition. This

is understood precisely as in the Euclidean (finite temperature) situation, due to a non-zero

expectation value for the Wilson loop around the spatial S1.

Curiously, it is apparent that in the classical supergravity approximation, the bulk

scalar glueball correlators are insensitive to fermions and their boundary conditions around

the spatial S1. It would be interesting to understand whether this is related to large-N

volume independence [35, 36] in the ZN symmetric phase.

We are primarily interested in real time response and for the sake of simplicity, we will

first study only the response functions for glueball fluctuations that are homogeneous on

the spatial S2 slices at the boundary, i.e.,

GR(τ, τ ′ ;n ; l = 0) = −i
∫

dΩ

4π

dΩ′

4π

∫

dχ

2π
e−inχ Θ(τ − τ ′) 〈

[

G(Ω, χ, τ), G(Ω′, 0, τ ′)
]

〉.
(3.12)

We will work with the dimensionless variables τ = t/RAdS, τ ′ = t′/RAdS and restore appro-

priate dimensions when necessary. As we will see when we look at R-current correlators,

it is straightforward to generalize to inhomogeoneous fluctuations on the spatial sphere.

For the moment we focus attention on the s-wave (ℓ = 0) retarded correlation function

of the scalar glueball operator. Also, for the s-waves, the correlator turns out to be a

– 9 –
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function of (τ − τ ′) so that it is natural to define the temporal Fourier transform of this as,

G̃R(ν ;n) =

∫ ∞

−∞
dτ e−iν(τ−τ ′)GR(τ, τ ′ ;n ; ℓ = 0). (3.13)

To calculate it at strong coupling and in the large radius regime (rχ ≥ RAdS

2
√

2
), we solve the

dilaton wave equation which is the equation for a massless, minimally coupled scalar field

in the background of the topological AdS black hole.

3.2.1 Spatially homogeneous case with n = ℓ = 0

We begin by looking at the spatially homogeneous response functions, l = n = 0, on the

dS3 × S1 slices. The solutions to the radial part of the Klein-Gordon equation in the

massless limit are the hypergeometric functions

Φ
(1)
0 (ν, ρ) =

π

4

1 + ν2

cosh
(

πν
2

) 2F1

(

−1 + iν

2
, −1 − iν

2
; 1 ;

ρ2

ρ2 − 1

)

(3.14)

and

Φ
(2)
0 (ν, ρ) = (ρ2 − 1)−2

2F1

(

3 − iν

2
,

3 + iν

2
; 3 ; − 1

ρ2 − 1

)

. (3.15)

For the l = 0 modes, the temporal dependence is also particularly simple, and has a natural

interpretation in terms of positive and negative frequency states

T +
0 (ν, τ) =

e−iντ

cosh τ
and T −

0 (ν, τ) =
eiντ

cosh τ
. (3.16)

Solving the Dirichlet problem and extracting correlation functions holographically requires

us to first pick the correct linear combination of the two solutions which is smooth near

the horizon ρ → 1 and represents an incoming wave falling into the horizon. In the near

horizon region, the asymptotic form of the solutions is:

Φ
(1)
0 (ν, ρ→ 1) →

i (2(ρ− 1))−
1−iν

2 e
π
2
ν Γ(−iν) Γ

(

3+iν
2

)

Γ
(

−1+iν
2

) + i (2(ρ− 1))−
1+i ν

2 e−
π
2
ν Γ(iν) Γ

(

3−iν
2

)

Γ
(

−1−iν
2

)

(3.17)

and

Φ
(2)
0 (ν, ρ→ 1) → (2(ρ− 1))−

1−i ν
2

2 Γ(−iν)
Γ
(

3−iν
2

)2 + (2(ρ− 1))−
1+i ν

2
2 Γ(iν)

Γ
(

3+iν
2

)2 . (3.18)

Note that these modes diverge as 1/
√

(ρ− 1) near the horizon. However, employing

the measure implied by the bulk metric
√−g ∼ (ρ2 − 1)5/2, these are still normalizable in

the vicinity of the horizon. We can now pick a linear combination such that only incoming

positive frequency waves are allowed at the horizon. This means, assuming that T +
0 are the

positive frequency modes with Re(ν) > 0, the solution to the radial wave equation should
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behave like (ρ − 1)−
1+iν

2 near the horizon. In conjunction with this we have the properly

normalized boundary behaviour as ρ→ ∞,

Φ
(1)
0 (ν, ρ→ ∞) → 1 + . . . ; Φ

(2)
0 (ν, ρ→ ∞) → 1

ρ4
+ . . . . (3.19)

The complete solution to the boundary value problem for a massless scalar with l = n = 0,

in the topological AdS black hole is then,

Φ0(ν, ρ) = Φ
(1)
0 (ν, ρ) + i

π

32
e

π
2
ν (ν2 + 1)2

cosh π
2ν

Φ
(2)
0 (ν, ρ). (3.20)

Following the holographic prescription [27, 28] for computing real time correlators, the

Yang-Mills retarded correlation function is obtained by analyzing the boundary terms from

the on-shell scalar action

S =
N2

16π2

∫

dτ

∫

dΩ

∫

dχ gρρ√−g Φ(τ, ρ) ∂ρΦ(τ, ρ)
∣

∣

ρ→∞ (3.21)

where, for the spatial s-wave we have defined

Φ(τ, ρ) =

∫ ∞

−∞

dν

2π
T +

0 (ν, τ) Φ0(ν, ρ). (3.22)

Putting together the explicit expressions for T +
0 (ν, τ), and the boundary behaviour of the

solution (3.20) we are immediately led to the (unrenormalized) s-wave retarded correlator

in frequency space, including all contact terms (finite polynomials in the frequency ν)

G̃R(ν; 0) =
N2

16π2

(

−1

8
(1 + ν2)2

[

ψ

(

3 − iν

2

)

+ ψ

(

3 + iν

2

)

− iπ coth

(

π
1

2
(ν + i)

)]

+
1

4
(1 + ν2)2 (ln ρ− γE + 1)

∣

∣

ρ→∞ +
1

2
(1 + ν2)ρ2

∣

∣

ρ→∞

)

. (3.23)

We remark that unlike the case of the Poincare’ patch description of AdS space, the non-

normalizable solution in the topological AdS black hole (akin to global AdS), contains

a term proportional to 1/ρ2 in its near-boundary asymptotics, but it only contributes a

quadratically divergent contact term in the correlation function above.

The divergent and scheme-dependent contact terms can be minimally subtracted away

to yield the renormalized, retarded Green’s function. Up to now we have been working with

dimensionless variables, corresponding to a de Sitter boundary of unit curvature. Restoring

dimensionful constants with the replacement

ν → νR, (3.24)

R being the radius of curvature of the boundary dS3 (or the inverse Hubble constant), the

renormalized retarded Green’s function continued into the complex frequency plane is

G̃R(ν; 0) = − N2

64π2
(R−2 + ν2)2

[

ψ

(

3 − iνR

2

)

− 2iνR

(1 + ν2R2)

]

. (3.25)
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− i 3/R

−i 5/R

−i 7/R

v

Figure 3. The analytic structure in complex frequency plane, of the massless, spatially homoge-

neous (l = n = 0), retarded Green’s function in the ZN symmetric phase, corresponding to the

topological AdS black hole.

For Im(ν) = 0, its real and imaginary parts match (3.23), and the function is analytic in

the upper half plane, with only isolated simple poles in the lower half plane at

νk = −i(3 + 2k)
1

R
k ∈ Z (3.26)

As argued in [27], poles of the retarded correlator in a black hole background coincide

with the quasinormal frequencies of the black hole. The quasinormal frequencies and

the retarded glueball correlator found above, for the topological black hole in AdS5, are

remarkably similar to the corresponding objects in the BTZ black hole [27].

3.2.2 Non-zero momentum along S1 and l = 0

It is relatively easy to allow for a non-zero discrete momentum n/rχ along the spatial S1.

This requires the modes (3.10), to solve the boundary value problem in the topological

black hole background. Following the same steps as in the s-wave correlator, (after te-

dious algebra) we find that the retarded Green’s function (with dimensionful constants

restored) is

G̃R(ν ;n) = − N2

128π2

(

(

ν − n

rχ

)2

+R−2

)(

(

ν +
n

rχ

)2

+R−2

)

× (3.27)

×
[

ψ

(

3

2
− i

R

2

(

ν − n

rχ

))

+ ψ

(

3

2
− i

R

2

(

ν +
n

rχ

))

−
2iR(ν − n

rχ
)

(ν − n
rχ

)2R2 + 1

−
2iR(ν + n

rχ
)

(ν + n
rχ

)2R2 + 1

]

, n ∈ Z.

When n = 0, this matches our expression for the s-wave correlator (3.25). The Green’s

function has nonanalyticities only in the lower half plane, with simple poles at

ν±k = −i(3 + 2k)R−1 ± n

rχ
; k, n ∈ Z, (3.28)
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− i 3/R

−i 7/R

−i 5/R

n/r− n/r

v

+ +

Figure 4. Simple poles in the frequency plane, of the massless retarded Green’s function with

non-zero momentum along the spatial circle.

giving the quasinormal frequencies of the topological black hole, with non-zero momentum

along the spatial S1. Interestingly each simple pole at n = 0 ‘splits’ into two simple poles at

non-zero n. Our expressions for the correlation functions on dS3×S1 in the ZN symmetric

phase satisfy the obvious consistency check — in the high frequency/large momentum limit

νR, n≫ 1, they reproduce the flat space Green’s function for the scalar glueball operator

G̃R(ν ;n)
∣

∣

∣

νR, n≫1
−→ − N2

128π2

(

ν2 − n2

r2χ

)2

ln

(

ν2 − n2

r2χ

)

. (3.29)

3.3 Thermal effects and the Gibbons-Hawking temperature

De Sitter space has a cosmological horizon and an associated Gibbons-Hawking tempera-

ture [23]. We therefore expect our boundary (dS3 × S1) field theory correlators to exhibit

thermal properties. For real frequencies ν, the digamma functions have an imaginary part

so that

Im G̃R(ν ;n)
∣

∣

∣

Im(ν)=0
=

N2

256π

((

ν − n

rχ

)2

+R−2

)((

ν +
n

rχ

)2

+R−2

)

× (3.30)

[

coth

(

πR

2

(

ν +
n

rχ
− iR−1

))

+ coth

(

πR

2

(

ν +
n

rχ
− iR−1

))]

Here we have used tanh(x) = coth(x+ iπ2 ), to cast the result in a form that will make the

connection to thermal physics explicit.

In flat space and in free field theory at finite temperature T 6= 0, the scalar glueball

propagator , with zero spatial momentum and frequency ω is proportional to the digamma

function [34]

G̃R(ω)
∣

∣

Flat space
= −N2

2π2
ω4ψ

(−iω
4πT

)

+ analytic. (3.31)

The imaginary part of the flat space glueball correlator is the spectral function

Im G̃R(ω)
∣

∣

Flat space
= −N2

2π2
ω4π coth

( ω

4T

)

. (3.32)
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In weakly coupled, or free field theories at finite temperature (on flat space), the one-

loop spectral function reflects the physical effect of ‘Bose enhancement’, following from

stimulated emission of bosons into the heat bath. In perturbative field theory on flat

space, this manifests itself as an enhancement of the decay rate of an unstable boson in a

heat bath, at rest with energy ω, by a factor (relative to the vacuum decay rate)

coth
( ω

4T

)

= 1 + 2nB

(ω

2

)

= 1 +
2

eω/2T − 1
. (3.33)

While there may not be an obvious way define a spectral representation in de Sitter space,

the similarity between our strongly coupled de Sitter space result (3.30) and (3.32) is

obvious. In particular, it allows the identification of a temperature in de Sitter space

TH =
R−1

2π
(3.34)

which is precisely the value of the Gibbons-Hawking temperature. Note that despite the

similarity between the expressions for dS3 and thermal correlators in flat space, there

is a crucial difference — the frequency or ‘energy’ appearing in the Bose-Einstein-like

distribution function in de Sitter space, is not the real frequency ν (3.30), but in fact

ν − iR−1. This difference can be traced back to the definition of our positive and negative

frequency modes (3.16). For real ν, the positive frequency modes are red-shifted away in the

far future. To get propagating modes in the future, we would need to choose ν = ω+ iR−1

with ω ∈ R.

It is interesting to note that our results for the retarded glueball propagator in the

strongly coupled field theory (in the ZN symmetric phase) on de Sitter space closely match

one-loop weakly coupled field theory calculations [37]. It would be a straightforward calcu-

lation to check whether there is exact agreement between weak and strong coupling results

on dS3 × S1. We leave this excercise for the future. For now, we only make the following

observation, which suggests that the scalar glueball correlator in the ZN symmetric phase

should not be renormalized.

It has been argued in [35, 36] that correlation functions of large N gauge theories in

the ZN symmetric phase, with some or all spacetime directions compactified, should be

independent of the volume of the compact directions. In the present situation this would

imply that on dS3 × S1 with antiperiodic boundary conditions for the fermions, large N

correlators in the ZN symmetric phase (rχ > RAdS/2
√

2) should be independent of the

radius of the S1. In particular then, for perturbations which are homogeneous along the

circle, the correlation functions should be independent of rχ and should match up with the

result on dS3×R. The latter is obtained by a (double) Wick rotation of S3×R. Since TrF 2

is a chiral primary in the N = 4 theory and its correlator on S3 × R is not renormalized

by interactions, one would expect this to be true also on dS3 × R.

3.4 The massive case

The holographic calculation of correlation functions in the topological AdS black hole can

be easily extended to massive scalars. In the context of the Type IIB theory, such massive
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Double poles

v

Figure 5. Double poles in the lower half plane for the massive (retarded) propagator at zero spatial

momentum.

states are stringy excitations with masses M2 ∼ α′−1 ≫ R−2
AdS. A scalar field of mass M

in the bulk is dual to a scalar operator O∆ in the field theory with conformal dimension

∆ = 2+
√

4 + (MRAdS)2. We will study below the free massive scalar in the bulk geometry

to extract information on the analytic structure of correlators of high dimension operators

in the field theory.

There are two primary motivations for looking at high dimension operators in the

field theory: i) The works of [38, 39] have demonstrated that propagators of heavy fields,

in the geodesic approximation, may be used to probe the bulk geometry behind horizons

and perhaps extract information on singularities behind such horizons. ii) One of our

main goals is to look for signatures of the transition between a ZN symmetric phase and

a ZN broken phase. In the bulk theory, the latter phase is the small bubble-of-nothing

geometry. Correlators in this latter geometry can only be computed using an eikonal

(WKB) approximation involving high frequencies and/or large masses.

Extending the holographic analysis done above for massless fields, to massive scalars

in the topological black hole geometry, we find that the frequency space correlator is

G̃R(ν) = C∆
Γ
(

1
2 (∆ − 1 − iνR)

)2
Γ (3 − ∆)

Γ
(

1
2 (3 − ∆ − iνR)

)2
Γ(∆ − 1)

, (3.35)

where the normalization constant C∆ = 2(∆ − 2)ǫ2(∆−4), with ǫ → 0 as the boundary is

approached.

In the massless limit MR→ 0, this reproduces the expression (3.25) found previously,

after subtracting an additional divergent contact term. The massive correlator has an

analytic structure that is qualitatively distinct from the massless case. In particular the

retarded correlator has an infinite set of double poles and simple poles at

νk = −i(∆ − 1 + 2k)
1

R
; k ∈ Z. (3.36)
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The significance of the appearance of double poles in the massive retarded propagator is

not entirely clear. Such double poles have also appeared in 2d CFT correlators with non-

integer conformal dimensions from the BTZ black hole [27], at zero spatial momentum. At

finite spatial momentum (e.g. n 6= 0) we expect the double poles to split into simple poles.

For real frequencies, the massive correlator also has an imaginary part

Im G̃R(ν) = −π
2

2
C∆

Γ(3 − ∆)

Γ(∆ − 1)

sin (π∆) sinh (π νR)

|Γ
(

1
2(3 − ∆ − iνR)

)

cos
(

π
2 (∆ − iνR)

)

|4 . (3.37)

The (de Sitter) thermal origin of this result is not as explicit as for the massless scalar.

However, after identifying the de Sitter Hawking temperature to be TH = R−1/2π, it

is worth comparing the above expression with the imaginary part of the propagator in

two dimensions for large non-integer conformal dimension deduced from the non-extremal

BTZ black hole [27]. The similarities between the two results, particularly the numerator

of (3.37), are striking.

The large mass, high frequency limit of this result is easily obtained, using Stirling’s

approximation

Γ(z)
∣

∣

z≫1
≃

√
2π

1√
z
e−z zz. (3.38)

When the masses are taken to be large so that MR ≫ 1, then ∆ ≈ MR. In this high

frequency, large mass limit it is useful to define a rescaled frequency variable

ν̃ ≡ ν

M
; νR, MR ≫ 1, (3.39)

so that

GR(ν̃) ∼ C∆

(

1 − iν̃

2

)MR(1−iν̃) (−1 − iν̃

2

)MR(1+iν̃)

. (3.40)

Here we have ignored an overall (real) phase due to frequency independent coefficients in the

large mass limit. At first sight, a potentially problematic feature of this approximation is

that there is a branch point singularity at ν̃ = +iwhich would imply a non-analyticity in the

upper half plane, inconsistent with the definition of a retarded propagator. Note that this

feature is purely a result of the high frequency approximation and the exact result (3.35) has

no singularities in the upper half of the complex frequency plane. Indeed, closer inspection

reveals that the putative branch cut originating at ν̃ = +i has a vanishing discontinuity in

the limit of large MR. The spurious branch cut originates from the equally spaced zeroes

of GR(ν) appearing to coalesce in the high frequency limit. The branch cut discontinuity

at ν̃ = −i is, however a genuine non-analyticity and originates from the infinite set of

poles merging into a continuum in the high frequency approximation. The easiest way to

understand the singularities and discontinuities of the function above, is to examine the

function z2MRz (z − 1)−2MR(z−1) and then make the replacement z → (1 − iν̃)/2.
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Figure 6. For large mass and frequency, the propagator in the topological black hole phase, has a

branch cut as indicated in the rescaled frequency plane, ν̃ = ν/M . This results from the apparent

merging of the infinite set of isolated poles of the exact Green’s function.

Along the branch cut B ≡ {ν̃ ∈ [−i,−i∞)}, we find that the retarded propagator has

a discontinuity

Disc|B G̃R(Mν̃) =2i C∆ sin(2πMR)

( |ν̃| + 1

2

)MR(|ν̃|+1)( |ν̃| − 1

2

)−MR(|ν̃|−1)

ν̃ = − i|ν̃| ,

|ν̃| ≥1.

It is clear that the discontinuity is large in the large mass limit.

Now let us look closely at the putative branch cut along the imaginary axis B′ ≡
{ν̃ ∈ [−i, i]}. Computing the discontinuity across this, we have

Disc|B′ G̃R(Mν̃) = 2i C∆ sin (MRπ(1 − x))

(

1 + x

2

)MR(1+x) (1 − x

2

)MR(1−x)

;

ν̃ = ix,

−1 ≤ x ≤ 1.

This vanishes when MR → ∞, for two reasons. The rapid sinusoidal oscillations will give

vanishing contribution to any contour integral along B′. Furthermore the amplitude of the

oscillations vanishes exponentially as evident from the expression above.

In the leading high frequency approximation , for real frequencies, the imaginary and

real parts of the Green’s function are given by

G̃R(ν) ≈ C∆

(

ν2 +M2

4M2

)MR

e
− 1

π
ν

TH
tan−1 ν

M e
− |ν|

2TH

(

cos

(

M

2TH

)

− i sgn(ν) sin

(

M

2TH

))

,

TH =
R−1

2π
, ν ∈ R.

(3.41)
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The high frequency, large mass limit thus appears to retain features of the thermal effects

of de Sitter space. This result can be deduced from (3.40) after choosing an appropriate

branch of the function and also directly follows from (3.37). We will see subsequently that

these high frequency expressions can also be derived by solving the wave equations using

a WKB approximation, providing a consistency check.

3.5 R-current correlation functions

Real time response to perturbations of a conserved charge density can reveal interesting

late time physics, such as hydrodynamic or diffusive relaxation. It is now well understood

and established [28, 29] via holographic calculations in AdS black hole backgrounds, that

correlators of conserved global currents exhibit hydrodynamic and diffusion poles. R-charge

diffusion in the strongly coupled, high temperature N = 4 plasma was first discovered

in [28]. The universal features of strongly coupled plasmas follow from the properties of

the stretched horizon of AdS black holes [29]. It is therefore natural to ask whether the

horizon in the topological AdS black hole geometry implies hydrodynamic behaviour of

correlation functions in the dual field theory. The answer to this question will depend

on the relevant time scales involved since the boundary field theory is formulated on an

expanding background, namely dS3 × S1.

The strong coupling correlators for SO(6) R-currents of N = 4 SUSY Yang-Mills theory

on dS3×S1 will be obtained holographically from the on-shell action for the SO(6)R gauge

fields in the topological AdS5 black hole background, by following the prescription of [28].

The Maxwell action for the gauge field is

S = − 1

4g2
SG

∫

d5x
√−ggµαgνβFµνFαβ , (3.42)

varying which gives the following equations of motion

1√−g∂ν

(√−ggµαgνβFαβ

)

= 0. (3.43)

Here, we have g2
SG = 16π2RAdS/N

2. We find it convenient to use the following form for

the metric in the region exterior to the horizon,

ds2 =
R2

AdS

4z2 (1 − z)
dz2 +

R2
AdS(1 − z)

z

[

−dτ2 + cosh2 τ dΩ2
2

]

+
r2χ
z
dχ2. (3.44)

Substituting the solution to the equation of motion that corresponds to the boundary value

Aα(z)
∣

∣

z=0
= A0

α back into the gauge field action, we will get a generating functional for

the R-charge correlators of the field theory.

Since the field theory lives on the dS3 × S1 boundary with spatial S2 × S1 spatial

slices, it is natural to consider the late time behaviour of long-wavelength fluctuations in

the following two cases:

1. The R-charge perturbation is inhomogeneous on the S1, but homogeneous on the

spatial section of dS3,
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2. The fluctuation is homogeneous on the circle, but inhomogeneous on the S2.

Of particular interest is the presence or the lack of late time hydrodynamic relaxation of

this system.

3.5.1 Inhomogeneous perturbation on the S1

In the first case, we will assume, for simplicity that the R-charge perturbation carries no

momentum around the S2. Furthermore, we use gauge freedom to set the radial component

of the gauge potential Az = 0. Hence, from the symmetries of the configuration, there are

two remaining bulk gauge fields that are non zero:

Aτ = Aτ (z, τ, χ), Aχ = Aχ(z, τ, χ). (3.45)

Since the χ-direction is a spatial circle, the two components of the vector potential, Aτ and

Aχ, can be conveniently expanded in Fourier modes on the circle. The time dependence

can also be re-expressed in terms of a mode expansion. There is a subtlety involved in this

however. For Aχ, which is a scalar in dS3, the mode decomposition is straightforward

Aχ(z, τ, χ) =
∑

n

einχ

2π

∫ ∞

−∞

dν

2π
Tχ(ν, τ) Gn(ν, z), (3.46)

where n ∈ Z. On the other hand Aτ , which is a gauge field in dS3, has its complete time

dependence captured by normal modes of two kinds — normalizable and delta-function

normalizable. In fact, below we show that there is a single normalizable mode and a

continuum of delta-function normalizable states obtained as solutions to a Schrödinger

problem. Anticipating this we write

Aτ (z, τ, χ) =
∑

n

einχ

2π

(∫ ∞

−∞

dν

2π
Tτ (ν, τ) Fn(ν, z) + T N

τ (τ)FN
n (z)

)

, (3.47)

where Tτ (ν, τ) and T N
τ (τ) will be the delta-normalizable and normalizable modes respec-

tively. The mode functions Tχ,τ are solutions to

d

dτ

(

cosh−2 τ
d

dτ

(

cosh2 τ Tτ (ν, τ)
)

)

= −(ν2 + 1) Tτ (ν, τ), (3.48a)

cosh−2 τ
d

dτ

(

cosh2 τ Tτ

)

= −i(ν + i)Tχ.

The first of these can be put in the form of a Schrödinger equation, by defining Tτ =

T̃ / cosh τ ,

− d2

dτ2
T̃ − 2

cosh2 τ
T̃ = ν2 T̃ . (3.49)

It is solved by the associated Legendre function P−iν
1 (tanh τ). For ν2 ≥ 0, there is a

continuous infinity of delta-function normalizable states, which yield

Tτ (ν, τ) =
e−iντ

cosh τ

(

ν − i tanh τ

ν − i

)

, Tχ(ν, τ) =
e−iντ

cosh τ
, ν2 ≥ 0. (3.50)
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The Schrödinger potential above also has bound states for ν2 < 0. In fact there is precisely

one normalizable bound state with ν2 = −1, corresponding to the solution

T N
τ (τ) =

1√
2

1

cosh2 τ
. (3.51)

This solution can be directly obtained by evaluating P−iν
1 (tanh τ) at ν2 = −1 (and appro-

priately normalized) or can be systematically inferred from the Maxwell equations. The

continuum modes for Aχ and Aτ are orthonormal with respect to the inner product

〈Ta,Ta〉 ≡
∫ ∞

−∞
dτ cosh2 τ Ta(ν, τ)Ta(ν

′, τ) = 2π δ(ν + ν ′), (3.52)

for a ∈ {χ, τ}, while the bound state is normalized so that

∫ ∞

−∞
dτ cosh2 τ

(

T N
τ

)2
= 1. (3.53)

In the far future the continuum modes are both given by Ta ∼ e−iντe−2τ . Upon

analytically continuing to the complex ν plane, for ν = i + ω, with ω ∈ R, they are

propagating (purely oscillatory) excitations with frequency ω in the far future. On the

other hand the (normalizable) bound state decays exponentially in the far past and future

and being real does not contribute to the flux at the horizon of the topological black hole.

Using these modes to eliminate the τ -dependence we find three equations that depend

only on Fn(ν, z) and Gn(ν, z)

− 1

R2
AdS

(ν + i) F ′
n +

n(1 − z)

r2χ
G′

n = 0, (3.54a)

1

R2
AdS

d

dz

(

(1 − z)F ′
n

)

+
n

r2χ
(ν − i)Gn − n2

r2χ
Fn = 0, (3.54b)

4z
d

dz

(

(1 − z)2G′
n

)

− n(ν + i)Fn + (ν2 + 1)Gn = 0. (3.54c)

Here, prime denotes a derivative with respect to z. The radial or z-dependence of the

bound state solution, FN(z) is found by analytically continuing the profile for generic ν to

ν = ±i. Note that there are three equations for two unknowns; so, to ensure a non-trivial

solution any two equations must imply the third and it is straightforward to check that this

is indeed the case. We can then use these equations of motion to derive two independent

ones, each containing only one of the unknown functions:

4z(1 − z)F ′′′
n − 4(3z − 1)F ′′

n − 4F ′
n =

[

n̄2 − ν2 + 1

1 − z

]

F ′
n, (3.55a)

4z(1 − z)G′′′
n − 4(5z − 1)G′′

n − 8(1 − 2z)

1 − z
G′

n =

[

n̄2 − (ν2 + 1)

1 − z

]

G′
n, (3.55b)

where we have defined n̄ ≡ nRAdS

rχ
. These equations are immediately solved in terms of

hypergeometric functions. Singling out the solutions that satisfy the purely infalling wave

boundary condition at the horizon, we find the induced boundary action for the Maxwell
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fields (see appendix A for details). The R-current correlators can be read off from the finite

and non-analytic pieces of this boundary action (A.8), (A.12). We will denote the Fourier

harmonics of the R-current along the spatial circle as

jµn(τ) =

∫ 2π

0
dχ e−inχ jµ(χ, τ), (3.56)

where we have already restricted attention to the s-wave sector on the spatial two-sphere.

For perturbations with non-vanishing momentum along the spatial circle, we define the

retarded, real time, Green’s functions as

Gµν(τ, τ ′;n) = 〈[ jµn(τ), jν−n(τ ′)]〉Θ(τ − τ ′) , µ, ν ∈ {χ, τ}. (3.57)

The conserved global currents are in one-to-one correspondence with the boundary values

of the 5-d gauge fields. Functionally differentiating the induced boundary action (A.12)

with respect to the boundary values of the gauge fields, we find

Gττ (τ, τ ′;n) = cosh2 τ cosh2 τ ′× (3.58a)

n2

[∫ ∞

−∞

dν

2π
Tτ (ν, τ)Tτ (−ν, τ ′) Ξ(ν, n) + T N

τ (τ)T N
τ (τ ′) Ξ(i, n)

]

,

Gχχ(τ, τ ′;n) = cosh2 τ cosh2 τ ′
∫ ∞

−∞

dν

2π
Tχ(ν, τ)Tχ(−ν, τ ′)

(

ν2 + 1
)

Ξ(ν, n), (3.58b)

Gτχ(τ, τ ′;n) =Gχτ ∗(τ, τ ′;n) (3.58c)

= cosh2 τ cosh2 τ ′ n
∫ ∞

−∞

dν

2π
Tτ (ν, τ)Tχ(−ν, τ ′) (ν − i)Ξ(ν, n),

Ξ(ν, n) =
N2RAdS

32π2rχ

(

ψ

(

1

2
+
i

2
(n̄− ν)

)

+ ψ

(

1

2
− i

2
(n̄+ ν)

))

. (3.58d)

It is easily established that the above expressions are indeed retarded Green’s functions

and are non-vanishing only when τ > τ ′. Two essential features ensure that this is the

case: The function Ξ(ν, n) appearing universally in the ν-integrals has only simple poles

in the lower half complex plane at

ν = −i(2k + 1) ± n̄ , k ∈ Z. (3.59)

There is a second source of non-analyticities in the ν-plane. This lies in the ν-dependent

normalization of the mode functions Tτ (ν, τ) (3.50). The potentially worrisome aspect of

this is the appearance of a pole in the upper half plane at ν = +i, which gives a non-

vanishing contribution for τ < τ ′. However, the potential problem is eliminated by the

term dependent on the discrete, normalizable mode T N
τ in (3.58a) which exactly cancels

against the contributions from the poles at ν = +i, ensuring that our Green’s function is

causal. The remaining Green’s functions are manifestly free of singularities in the upper

half plane.

We thus see that the Son-Starinets recipe for determining real time response functions

works in the case of the topological black hole, provided we carefully account for the

contributions from both the continuum and discrete mode functions in dS3.
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It is also clear in the above expressions, that there are no diffusion poles. Instead, from

the properties of the digamma function which we have encountered before, the frequency

space Green’s function which is effectively Ξ(ν, n) , has only simple poles in the complex

ν-plane, the lowest of these being at

ν = −i± n̄. (3.60)

Excitations with complex ν = ω− i, and ω ∈ R will propagate at late times, the perturba-

tions simply evolving as left- and right-moving excitations on the S1 without dissipating.

The absence of any diffusion or transport like behaviour may be intuitively explained

by noticing the similarity of the topological AdS black hole to the BTZ black hole Setting

up an excitation with momentum only on the S1 is equivalent to saying the variation of

the fields along the S2 is zero. Therefore, aside from the time dependent factors associated

to the de Sitter expansion, the metric that is “seen” by the bulk fields is not the full five

dimensional metric, but its effective 2 + 1 dimensional portion,

ds2 = −R2
AdS(ρ

2 − 1)dτ2 +
R2

AdS

ρ2 − 1
dρ2 + ρ2r2χdχ

2 (3.61)

Comparing this with the metric for a 2 + 1 dimensional BTZ black hole with zero angular

momentum

ds2 = −
(

r2

R2
−M

)

dt2 +

(

r2

R2
−M

)−1

dr2 + r2dφ2, (3.62)

we note the obvious similarity. Therefore we expect the behaviour of fields in the topological

black hole background with an inhomogeneous excitation around the S1, to be similar to

the behaviour of the fields in a BTZ black hole background. In other words, they should

behave as in a (1+1)-dimensional CFT [27], just as we see from our results above.

3.5.2 Inhomogeneous perturbation on the S2

We will now examine the real time response to fluctuations carrying momentum along the

spatial sections of three dimensional de Sitter space. Each spatial section of dS3 is a two-

sphere which undergoes exponential expansion at late times. For this case, we will focus

on a situation where an inhomogeneous R-charge perturbation is set up on the two-sphere

with only a dependence on the polar angle θ and time τ . For this configuration, the dual

bulk gauge fields are

Aτ = Aτ (z, τ, θ) ; Aθ = Aθ(z, τ, θ) ; Az = Aχ = 0, (3.63)

where Az is set to zero by the gauge freedom, and Aχ vanishes due to χ-independence of

the configuration. By spherical symmetry, the scalar potential Aτ and the vector potential

Aθ, each can be expanded in terms of scalar and vector spherical harmonics, respectively:

Aτ =

∞
∑

ℓ=0

Fℓ(z, τ) Y
0
ℓ (θ), Aθ =

∞
∑

ℓ=1

Gℓ(z, τ) ∂θY
0
ℓ (θ). (3.64)
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Substituting these into the bulk Maxwell equations, we find

4z(1 − z)∂z ((1 − z)∂zGℓ) − ∂2
τGℓ + ∂τFℓ = 0 (3.65a)

4z(1 − z)∂z ((1 − z)∂zFℓ) −
ℓ(ℓ+ 1)

cosh2 τ
(Fℓ − ∂τGℓ) = 0, (3.65b)

∂τ

(

cosh2 τ∂zFℓ

)

+ ℓ(ℓ+ 1)∂zGℓ = 0. (3.65c)

From equations (3.65b) and (3.65c) we obtain a differential equation for F ′
ℓ ≡ ∂zFℓ

4∂z

(

z(1 − z)∂z

(

(1 − z)F ′
ℓ

))

− ℓ(ℓ+ 1)

cosh2 τ
F ′

ℓ −
1

cosh2 τ
∂2

τ

(

cosh2 τF ′
ℓ

)

= 0. (3.66)

Now we will separate out the explicit temporal dependence, keeping in mind, as before,

the possibility of contributions from both discrete and continuous modes

F ′
ℓ(z, τ) =

∫ ∞

−∞
dν Tℓ(ν, τ) Fℓ(ν, z) +

∑

m

T N
ℓ m(τ)FN

ℓ m(z). (3.67)

The mode functions Tℓ satisfy
[

−∂2
τ − ℓ(ℓ+ 1)

cosh2 τ

]

(

cosh2 τ Tℓ

)

= ν2
(

cosh2 τ Tℓ

)

, (3.68)

which is a Schrödinger equation whose potential clearly will have both bound states and

scattering or continuum states. The full set of solutions form an orthonormal, complete

set. Indeed, the delta-normalized eigenstates are the Legendre functions

Tℓ(ν, τ) = Γ(1 + iν)
P−iν

ℓ (tanh τ)

cosh2 τ
. (3.69)

Those with ν2 > 0 are scattering states with continuous values of ν ∈ R, while the discrete,

“bound states” have −iν = 1, 2, . . . ℓ,

T N
ℓ m =

√

m(ℓ−m)!

(ℓ+m)!

Pm
ℓ (tanh τ)

cosh2 τ
, m = 1, 2, . . . ℓ. (3.70)

For ν2 > 0, the late time, τ → ∞, behaviour of the modes will be significant,

Tℓ(ν, τ)
∣

∣

τ≫1
→ e−iντ e−2τ , (3.71)

as these modes are oscillatory. Applying infalling boundary conditions on these modes at

the horizon of the topological AdS black hole, (3.66) yields,

Fℓ(ν, z) = Cℓ(ν) (1 − z)−1−iν/2
2F1

(

−iν
2
, 1 − i

ν

2
; 1 − iν ; 1 − z

)

. (3.72)

For the discrete series, the radial profile in the bulk, FN
ℓ m(z) is obtained by evaluating

Fℓ(ν, z) at ν = −im. Putting the above ingredients together, the general form of the

electric field along the radial direction in the bulk is

A′
τ (z, τ, θ) =

∞
∑

ℓ=0

Y 0
ℓ (θ)

(

∫ ∞

−∞

dν

2π
Γ(1 + iν)

P−iν
ℓ (tanh τ)

cosh2 τ
Fℓ(ν, z)+

+

ℓ
∑

m=1

√

m
(ℓ−m)!

(ℓ+m)!

Pm
ℓ (tanh τ)

cosh2 τ
FN

ℓ m(z)

)

.

(3.73)
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This also allows us to automatically solve for A′
θ using (3.65c) and we get

A′
θ(z, τ, θ) = −

∞
∑

ℓ=1

∂θY
0
ℓ (θ)

ℓ(ℓ+ 1)

(

∫ ∞

−∞

dν

2π
Γ(1 + iν) ∂τP

−iν
ℓ (tanh τ) Fℓ(ν, z)+

+

ℓ
∑

m=1

√

m
(ℓ−m)!

(ℓ+m)!
∂τP

m
ℓ (tanh τ)FN

ℓ m(z)

)

.

(3.74)

Now, the bulk gauge field action can be shown to induce a boundary term which will be the

generating functional for the boundary R-current correlators. Using the explicit solutions

above, the induced boundary action becomes

S =
1

2g2
SG

∫

dτ rχ

[ ∞
∑

ℓ=0

Fℓ(z, τ)F ′
ℓ(z, τ) cosh2 τ +

∞
∑

ℓ=1

ℓ(ℓ+ 1)Gℓ(z, τ)G′
ℓ(z, τ)

]

z=ǫ→0

.

(3.75)

The next step is to express this completely in terms of the boundary values of the gauge

potentials F0
ℓ (τ) ≡ Fℓ(ǫ, τ) and G0

ℓ (τ) ≡ Gℓ(ǫ, τ). Their radial derivatives Fℓ
′ and G′

ℓ

(equivalently A′
τ and A′

θ ) at the boundary z = ǫ, are also determined completely by the

boundary values of the gauge potentials, F0
ℓ (τ) and G0

ℓ (τ) as in (A.18).

From the boundary action above, we thus find that the real time, retarded Green’s

functions for the R-charge currents jµ, in the gauge theory are

Gττ (τ, τ ′; ℓ) = ℓ(ℓ+ 1)

[ ∫ ∞

−∞

dν

2π

πν

sinhπν
P−iν

ℓ (tanh τ)P iν
ℓ (tanh τ ′)Υ(ν)+ (3.76a)

+
ℓ
∑

m=1

(−1)mmPm
ℓ (tanh τ)P−m

ℓ (tanh τ ′)Υ(im)

]

,

Gθθ(τ, τ ′; ℓ) = ℓ(ℓ+ 1)

[
∫ ∞

−∞

dν

2π

πν

sinhπν
∂τP

−iν
ℓ (tanh τ) ∂τ ′P iν

ℓ (tanh τ ′)Υ(ν)+ (3.76b)

+

ℓ
∑

m=1

(−1)mm∂τP
m
ℓ (tanh τ)∂τ ′P−m

ℓ (tanh τ ′)Υ(im)

]

,

Gτθ(τ, τ ′; ℓ) =ℓ(ℓ+ 1)

[∫ ∞

−∞

dν

2π

πν

sinhπν
P−iν

ℓ (tanh τ) ∂τ ′P iν
ℓ (tanh τ ′)Υ(ν)+ (3.76c)

+
ℓ
∑

m=1

(−1)mmPm
ℓ (tanh τ)∂τ ′P−m

ℓ (tanh τ ′)Υ(im)

]

,

Υ(ν) =
N2rχ

64π2RAdS

(

ψ

(

− iν

2

)

− 1

iν

)

. (3.76d)

We need to first confirm that these Green functions satisfy basic consistency checks. Specif-

ically, the retarded functions must vanish for τ < τ ′. As in the previous case, this property

is not manifest, but follows from the nature of the non-analyticities of Υ(ν), and the nor-

malized mode functions Γ(1 + iν)P−iν
ℓ (tanh τ), in the complex ν-plane. For real values of

ν, the associated Legendre function is [41, 42]

Γ(1 + iν)P−iν
ℓ (tanh τ) = e−iντ

2F1(−ℓ, ℓ+ 1; 1 + iν, (1 − tanh τ)/2). (3.77)
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For integer ℓ, the hypergeometric function is a finite polynomial in tanh τ and a ratio of

degree ℓ polynomials of ν. Therefore the exponential frequency dependence means that,

for τ − τ ′ < 0, the integrals over the frequency ν can be evaluated by closing the contour

in the upper half plane. The function Υ(ν) has no poles in the upper half complex plane.

It has simple poles at

ν = 0, −2i, −4i . . . (3.78)

The normalized modes, Γ(1 + iν)P−iν
ℓ (tanh τ) have exactly ℓ simple poles in the upper

half plane at ν = i, 2i . . . ℓi. The contributions from these are, however, cancelled by

the inclusion of the discrete modes in the retarded Green’s function above. Hence our

correlators are zero for τ < τ ′.

3.5.3 Late time behaviour

The real time response functions in general contain important information on the long time

relaxation of perturbations away from the equilibrium or ground state. In thermal field

theory on flat space, the relaxation of such fluctuations of conserved charges proceeds via

hydrodynamic or diffusion modes. The response functions at strong coupling then exhibit

diffusion poles in frequency space, Gττ ∝ (iω−Dk2)−1, where ω is the frequency and k, the

soft spatial momentum. Due to the explicit time dependence of the background metric, we

cannot do a similar frequency space study of the full Green’s functions in de Sitter space.

Instead, we could analyze their behaviour as functions of time.

In de Sitter space, perturbations labelled by wave number ℓ, get red-shifted so that

given sufficient time their physical wavelengths become super-horizon sized. This hap-

pens when
ℓ e−τ

R
∼ 1

R
. (3.79)

At late enough times, even very high harmonics on the sphere get stretched and eventually

exit the horizon. To zoom in on the time evolution of such modes, it is useful to think

of ℓe−τ , the physical wave number, as being fixed as τ → ∞. For example, in this late

time approximation we neglect terms like ℓ e−2τ in comparison to powers of ℓ e−τ . This

is practically equivalent to going to planar coordinates for de Sitter space and the mode

functions behave as

P−iν
ℓ (tanh τ)

∣

∣

ℓe−τ= fixed
−→ ℓ−iν Jiν

(

2ℓe−τ
)

(3.80)

It is possible to derive this by replacing the potential ℓ(ℓ + 1)sech2τ in the mode equa-

tion (3.68), with 4 ℓ2 e−2τ . Note that, instead of a fixed physical wavelength if we focus

attention on fixed comoving wavenumber, given by ℓ, all modes simply approach the s-wave

at late times,

lim
τ→∞

Γ(1 + iν)P−iν
ℓ (tanh τ)

∣

∣

ℓ fixed
−→ e−iντ . (3.81)

For fixed physical wavelengths, ℓ e−τ , or equivalently, at the time when a harmonic

ℓ crosses the horizon, the real time correlators are given by the exact results with the

replacement (3.80). The integral over ν can be easily evaluated using the method of
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Figure 7. The leading behaviour of correlators Gττ (and Gτθ), up to normalization constants: as

a function of τ on the left with ℓ = 1000 and, on the right, as a function of ℓe−τ
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Figure 8. The leading behaviour of Gθθ (and Gθτ ): The left figure is plotted as a function of time

for ℓ = 1000, while the right hand side figure is a function of ℓe−τ .

residues, and it turns out that the leading contribution at late times is from the residue at

ν = 0. Thus

Gττ (τ, 0; ℓ), Gτθ(τ, 0; ℓ) ∼ J0(2 ℓe
−τ ) (3.82)

and

Gθτ (τ, 0; ℓ), Gθθ(τ, 0; ℓ) ∼ ∂τJ0(2 ℓe
−τ ). (3.83)

This late time behaviour is depicted in figures 7 and 8.

The late time behaviour deduced above is not characteristic of diffusion in de Sit-

ter space. Suppose that the R-charge fluctuation relaxed via diffusion modes, then the

covariant conservation of the R-current together with Fick’s law would lead to the diffu-

sion equation

∂τ j
τ = D∇θ∇θ jτ , (3.84)

in dS3, D being the diffusion constant. The spherical harmonics of jτ on the expanding

spatial spherical sections would then obey,

∂τ j
τ
ℓ = −D ℓ(ℓ+ 1)

cosh2 τ
jτℓ . (3.85)

At late times τ → ∞ and large enough ℓ, this is solved by

jτℓ ∼ exp

(

1

2
D ℓ2 e−2τ

)

. (3.86)
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Figure 9. The global structure of the bubble geometry. The region inside the shaded region is

empty, and its surface represents the de Sitter expansion of the bubble at r = rh.

The large time behaviour of the Green’s functions (3.82) and (3.83) do not match up

with expected diffusive relaxation (3.86) on dS3. A natural reason for this is that the rate

of exponential expansion of the spatial section and the Gibbons-Hawking temperature are

both set by R−1. Thus the mean free path or the mean free time between collisions is

comparable to the expansion time scales so that the system never enters a diffusive regime.

4 The (small) AdS bubble of nothing

The topological AdS black hole discussed above has a semiclassical instability when

rχ <
RAdS

2
√

2
(4.1)

which causes it to decay into a “bubble of nothing” in AdS space. The instability only

occurs if fermions have antiperiodic boundary conditions in the χ-direction. With peri-

odic boundary conditions for both bosons and fermions, the topological AdS black hole is

absolutely stable.

As originally pointed out in [9] (and [7] in the present context), the decay of a false

vacuum in semiclassical gravity is computed by the Euclidean bounce which has the same

asymptotics as the false vacuum in Euclidean signature. The bounce is a solution to the

Euclidean equations of motion with a non-conformal negative mode. In the context of the

asymptotically (locally) AdS spaces in question, the small Euclidean Schwarzschild solution

represents such a bounce solution. In Lorentzian signature, the semiclassical picture of the

decay process at time t = 0 (say) involves replacing the t > 0 part of the false vacuum

solution (the topological black hole) with the appropriate analytic continuation of the

Euclidean bounce to Lorentzian signature. The analytic continuation of the small Euclidean

AdS black hole bounce which leads to dS3 × S1 boundary asymptotics, is the (small) AdS
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bubble-of-nothing. The metric for the AdS bubble-of-nothing solution is

ds2 = f(r) r2χ dχ
2 + f(r)−1 dr2 + r2

(

− dt2

RAdS2

+ cosh2

(

t

RAdS

)

dΩ2
2

)

,

f(r) = 1 +
r2

R2
AdS

− r2h(R2
AdS + r2h)

r2
. (4.2)

In order to avoid a conical singularity in the interior, the periodicity of the compact χ

coordinate is related to rh as

2πrχ = 2πR2
AdS

rh
r2h +R2

AdS

. (4.3)

Passing to the dimensionless coordinates introduced earlier,

ρ =
√

(r/RAdS)2 + 1, τ =
t

RAdS
, r̃h =

rh
RAdS

, (4.4)

the metric becomes

ds2 = R2
AdS

[

f̃(ρ)
r2χ
R2

AdS

dχ2 + f̃(ρ)−1 ρ2

ρ2 − 1
dρ2 + (ρ2 − 1)(−dτ2 + cosh2 τdΩ2

2)

]

(4.5a)

f̃(ρ) = ρ2 − 1

ρ2 − 1
r̃2h
(

r̃2h + 1
)

. (4.5b)

In the AdS bubble of nothing spacetime, a slice of constant ρ is dS3 × S1. The S1,

however, shrinks to zero size smoothly at ρ =
√

r̃2h + 1. The shrinking circle is the cigar

of the Euclidean Schwarzschild solution. The boundary of the spacetime is approached

as ρ → ∞. The semiclassical decay of the topological black hole at τ = 0, results in the

sudden appearance of a bubble of nothing in the region of spacetime, ρ2 ≤ 1 + r̃2h.

4.1 WKB for the AdS bubble of nothing

An exact holographic computation of correlation functions in the AdS bubble of nothing

background appears difficult as analytical solutions to the wave equation in this background

are not known. Despite this, we may obtain the boundary Green’s function following

a systematic approximation. In particular we will employ the WKB approximation to

determine boundary correlation functions at high frequency and large mass. The WKB

approximation has been used successfully [39] to find high frequency Green’s functions in

the Big AdS-Schwarzschild black hole. In this approximation, lines of isolated singularities

(poles) get replaced by branch cuts since, in the high frequency regime, the separation

between poles effectively goes to zero, as seen in our example above in section 2.3.1.

We first take the massive scalar wave equation

1√−g ∂µ(gµν√−g ∂νΦ) −M2Φ = 0, (4.6)

in the bubble background and expand the scalar field in harmonics on dS3 ×S1 as in (3.3).

The harmonics Φn(ν, ρ) then satisfy a radial differential equation which can be put in the
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form

d2Φn

dx2
+

(

1

x− 1
+

1

x+ r̃2h
+

1

x− r̃2h − 1

)

dΦn

dx
+

1

4(x− 1)(x + r̃2h)(x− r̃2h − 1)
× (4.7)

×
(

ν2 + 1 − n2R
2
AdS

r2χ

(x− 1)2

(x+ r̃2h)(x− r̃2h − 1)
−M2R2(x− 1)

)

Φn = 0,

where x = ρ2 and n labels the momentum along the S1. This is an ordinary differential

equation with four regular or nonessential singular points at x = 1, −r̃2h, r̃2h + 1 and ∞.

Analytical solutions for this type of equation are unknown. In fact, a similar differential

equation was encountered in the computation of glueball masses at strong coupling in the

three dimensional effective theory obtained from Euclidean thermal N = 4 SYM [40] (on

R
3×S1 with SUSY-breaking boundary conditions). In that case the dual bulk geometry is

the Euclidean black brane solution in AdS space where the thermal circle shrinks to zero

size smoothly.

The WKB solutions to the wave equation can be found after going to the Schrödinger

form by introducing the variables

Φ =
Ψ

√

ρ(ρ2 − 1)
, (4.8a)

u =
r̃h

1 + 2r̃2h
cot−1

(

ρ

r̃h

)

+

√

1 + r̃2h

1 + 2r̃2h
coth−1





ρ
√

1 + r̃2h



 . (4.8b)

These are the natural generalizations of (3.6) and (3.7) to the bubble of nothing geometry.

The cigar in the geometry gets smoothly capped off at ρ =
√

r̃2h + 1, where the spacetime

ends. In terms of the u coordinate, this occurs as u → ∞. In terms of the harmonics of

Ψ on the dS3 × S1 slices, as in (3.3), we obtain the Schrödinger equation obeyed by the

harmonics Ψn(ν, u) in the (small) AdS bubble of nothing:

− d2

du2
Ψn(ν, u) + Ṽn(ν, u) Ψn(ν, u) = 0, (4.9a)

Ṽn(ν, u) =

(

(MR)2 − ν2 + 1

ρ2 − 1

)(

ρ2 − 1 − 1

ρ2
r̃2h (r̃2h + 1)

)

+ (4.9b)

+ n2R
2
AdS

r2χ

ρ2 − 1

ρ2
+

1

4ρ2
(15ρ4 − 10ρ2 − 1).

Here ρ is implicitly a function of u, determined by the solution to (4.8b). In addition to the

fact that the Schrödinger potential is far more complicated than (3.9), one crucial difference

to the TBH case is that the potential cannot be defined independent of the frequency itself.

This is due to the term proportional to r̃h in (4.9b). This situation is also in contrast to

the case of the big AdS-Schwarzschild black hole in [39]. Here, for a given frequency (and

mass), we need to find the “zero energy” eigenstate of the Schrödinger problem (4.9a).

Interestingly, the qualitative behaviour of the potential Ṽn changes, depending on the

relative values of the mass and the frequency. This is illustrated in figures 10 and 11.

– 29 –



J
H
E
P
0
4
(
2
0
0
9
)
0
6
3

0.5 1 1.5 2 2.5
-20

0

20

40

60

u

V

Figure 10. The Schrödinger potential for a massive scalar in the AdS bubble of nothing. In the

above plot the dimensionless frequency ν = 7, the mass MR = 2 and r̃h = rh/RAdS = 1.
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Figure 11. The Schrödinger potential for ν = 7, the mass MR = 7 and r̃h = rh/RAdS = 1.

The qualitative nature of the potential is easy to grasp in the high frequency limit, wherein

we take

ν → ∞, MR→ ∞, ν̃ =
ν

MR
fixed. (4.10)

For simplicity, we also set n = 0, focussing attention on the spatially homogeneous fields.

In this approximation,

Ṽ0(ν, u) → V(ν̃, u) = (MR)2
(

1 − ν̃2

ρ2 − 1

)(

ρ2 − 1 − 1

ρ2
r̃2h(r̃2h + 1)

)

. (4.11)

The potential is vanishing (having thrown away a subleading constant in the large frequency

limit) at the tip of the cigar ρ =
√

r̃2h + 1. Using u ∼ − ln(ρ −
√

r̃2h + 1) near this point,

it follows that V(ν̃, u) decays exponentially as a function of u. The potential has another

zero at ρ =
√
ν̃2 + 1. Now, since the spacetime ends at ρ =

√

1 + r̃2h, the number of zeroes

of the potential depends on whether |ν̃| is greater than or less than r̃h. In particular, when

|ν̃| > r̃h, the potential energy has two zeroes or turning points, and qualitatively resembles

figure 10, while for |ν̃| < r̃h, it behaves as in figure 11 (the potential asymptotes to a
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constant different from zero in the figures; however this constant becomes negligible in the

high frequency limit).

Zero energy Schrödinger wave functions in the potential (4.11) are marginally bound

states for |ν̃| > r̃h, since the potential has two turning points. For |ν̃| < r̃h, there is only one

turning point and the wave function should exhibit a qualitative change in its behaviour at

|ν̃| = r̃h. This also strongly suggests that in the complex frequency plane, ν̃ = ±r̃h should

be singularities of boundary correlation functions.

The zero energy wave function for the Schrödinger equation can be obtained in the

WKB approximation, where care needs to be taken in applying the matching conditions

at each of the turning points in the potential. We treat the two cases |ν̃| > r̃h and

|ν̃| < r̃h separately.

WKB approximation for ν̃2 > r̃2h. There are two distinct regions in the potential: (i)

the “quantum tunnelling region”,
√

1 + ν̃2 < ρ < ∞ which we label as Region I, and (ii)

the “propagating region”,
√

1 + r̃2h < ρ <
√

1 + ν̃2 which we call Region II.

In Region I, we write the WKB solutions as

ΨWKB(ν̃, u) =
1

V1/4

(

A+ exp

(∫ u

uc

√
V du

)

+A− exp

(

−
∫ u

uc

√
V du

))

. (4.12)

where the classical turning point uc is defined by

ρ(uc) ≡
√

ν̃2 + 1. (4.13)

These represent the growing and decaying modes in the near boundary region of the bulk

geometry. This can be understood easily as follows.

du

dρ

∣

∣

∣

∣

ρ→∞
≈ − 1

ρ2
=⇒ V ≈ (MR)2 ρ2 (4.14)

which then immediately yields the near boundary WKB solution (4.12) for Ψ. This together

with its relation (4.8b) to the massive bulk scalar field Φ implies

ΦWKB

∣

∣

ρ→∞ ∼ A+ (· · · )ρ−2−MR +A− (· · · ) ρ−2+MR (4.15)

where the ellipses denote unspecified normalization constants. The two power laws ap-

pearing in this solution are precisely the normalizable and non-normalizable modes of

the massive scalar field, in the limit of large mass, in an asymptotically (locally) AdS

spacetime. Following the prescription for computing the retarded Green’s functions, we

normalize ΨWKB (4.15) so that it approaches unity near the boundary.

In the interior, however, for ρ ≤
√

1 + ν̃2 the solutions enter Region II and become

oscillatory. In Region II, we have

ΨWKB(ν̃, u) =
1

|V|1/4

(

B+ exp

(

i

∫ u

uc

√

|V| dρ
)

+B− exp

(

−i
∫ u

uc

√

|V| du
))

. (4.16)

The constants are uniquely determined by the WKB matching conditions at the classical

turning points of the potential V(ν̃, u) and the one normalization condition on A− near the

– 31 –



J
H
E
P
0
4
(
2
0
0
9
)
0
6
3

0.5 1.5 2 2.5 3 3.5
u

0.5

1

1.5

Y

Figure 12. The exact numerical solution to the Schrödinger problem for the AdS bubble of nothing.

Here νR = 200, MR = 100 and rh/R = 1. The solution approaches a constant for u ≫ 1, while

the classically forbidden region is 0 < u < uc ≈ 0.49.

boundary. The details of the WKB matching conditions are explained in appendix B. The

crucial result of the matching procedure is that the solution in the near boundary region

(Region I) has a normalizable mode with strength

A+ = −1

2
A− tan

(
∫ uc

∞

√

|V(ν̃, u)|du
)

(4.17)

The argument in the above expession can, as usual, be identified with the action of a zero

energy classical particle trapped in the potential V(ν̃, u) between the two turning points

uc and u→ ∞ (the latter corresponding to ρ→
√

1 + r̃2h where spacetime ends).

The crucial difference between the bubble of nothing geometry and the topological

black hole is the boundary condition imposed on the solutions to the wave equation in the

interior. To extract retarded correlators from the geometry with a horizon we impose an

infalling condition on the plane wave solutions near the horizon. In the bubble geometry,

however, since spacetime ends smoothly in the interior where the cigar caps off, there is

no freedom in choosing the boundary condition at the tip of the cigar – we must require

regularity (normalizability) of solutions in the interior. This means that the solution to

the Schrödinger equation (4.9a) must approach a constant exponentially as u→ ∞.

The Green’s function at high frequency is completely determined ( up to contact terms)

by the ratio A+/A−. After substituting the solution (4.15) into the boundary action we find,

G̃R(ν̃) ≈ lim
ǫ→0

MR exp

(

2

∫ ǫ

uc

√

V(ν̃, u) du

)

tan

(
∫ uc

∞

√

|V(ν̃, u)| du
)

. (4.18)

The exponential prefactor in this expression is the WKB transmission coefficient into the

classically forbidden Region I. The physically relevant contribution to the transmission

coefficient is the constant, ǫ-independent term in an expansion around the boundary ǫ→ 0.

The leading ǫ dependence, which is an overall multiplicative constant proportional to ǫ2MR,

can be absorbed into the normalization of the correlation function.
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The first observation we can make without actually evaluating (4.18), is that it has an

infinite set of poles as a function of ν̃ on the real axis for ν̃2 > r2h. These occur whenever

SII(ν̃, MR) =

∫ uc

∞
du
√

|V(ν̃, u)| =

(

n+
1

2

)

π , n ∈ Z. (4.19)

That is, the semiclassical action in the propagating region is a half-integral multiple of π.

This is of course the condition for the existence of a bound state wave function, and the

poles in the Green’s function reflect the appearance of these bound states at certain values

of ν̃ on the real axis. Recall that the corresponding correlators in the topological black

hole phase do not have any poles on the real axis.

At first sight the poles on the real frequency axis might appear somewhat surprising.

However, they have the following natural physical interpretation: the low energy physics of

the gauge theory on the boundary of the AdS bubble of nothing is that of nonsupersymmet-

ric Yang-Mills theory at large N (and strong ’t Hooft coupling) on dS3. The antiperiodic

boundary conditions on the spatial S1 make all fermionic excitations massive and the bro-

ken supersymmetry leads to large radiative corrections to the scalar masses. In the strongly

coupled theory, the dynamical scale of the three dimensional effective theory is expected

to be set by r−1
χ , the scale of the compact S1 direction. When the Gibbons-Hawking tem-

perature TH = 1/(2πR) in dS3 is smaller than r−1
χ , we expect the gauge theory to be in a

confined phase where the degrees of freedom are gauge singlet glueballs. The appearance of

the isolated poles in the high frequency correlators is consistent with this physical picture.

The WKB integral in Region II, in the high frequency approximation to the Green’s

function (4.18) can be expressed in terms of complete elliptic integrals as

SII(ν̃, MR) =
1

2
MR

∫ r̃2
h
+1

ν̃2+1
dx

√

ν̃2

x−1 − 1
√

(x+ r̃2h)(x− r̃2h − 1)

= i
MR

√

1 + 2r̃2h

[

|ν̃|
(

K

(

a

b

)

−
√

b

a
K

(

b

a

))

+
1

|ν̃|(1 + r̃2h)

(

Π

(

a
∣

∣

a

b

)

−
√

b

a
Π

(

b
∣

∣

b

a

))]

,

a =
ν̃2 + 1 + r̃2h

ν̃2
,

b =
1 + 2r̃2h
r̃2h

, ν̃2 > r2h. (4.20)

From the general characteristics of these elliptic functions and their singularities [41], it

can be checked that SII(ν̃, MR) has no singularities on the real axis for ν̃2 > r̃2h. Potential

logarithmic branch points at ν̃2 = r̃2h and at ν̃ = 0, cancel out between the individual terms

above. In fact, for any fixed value of r̃h, it also follows that, for large ν̃, the WKB integral

increases linearly with ν̃.

SII ∝ |ν̃| ; |ν̃| ≫ 1. (4.21)
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Hence for |ν̃| ≫ r̃h, the propagator (4.18) has approximately equally spaced simple poles

on the real axis, whenever SII = (n+ 1
2)π.

Although there are no other sources of singularities from SII, the WKB transmission

coefficient in Region I, which also enters the Green’s function (4.18) can have branch point

singularities on the real axis,

SI(ν̃, MR) = −1

2
MR

∫ 1/ǫ2

1+ν̃2

dx

√

1 − ν̃2

x−1
√

(x+ r̃2h)(x− r̃2h − 1)

= − MR
√

1 + 2r̃2h

(

|ν̃|
(

F
(

csc−1 √a, a
b

)

−K
(a

b

))

− 1

|ν̃|(1 + r̃2h) Π
(

a|a
b

)

)

− 1

2
MR



ln





2ǫ−2

|ν̃|
√

1 + r̃2h



+ iπ



 .

(4.22)

This function is also free of any branch cuts at ν̃ = ±r̃h, as can be checked by directly

evaluating the integral at this point. However, the logarithmic growth at large ν̃ implies a

branch point at infinity.

As an aside we mention that the high frequency limit in the topological black hole

phase (3.40) can be rederived by formally setting r̃h = 0 in the WKB integrals and G̃R(ν̃) ∼
exp(2SI).

WKB for ν̃2 < r̃2

h
. For low (real) frequencies ν̃2 < r̃2h, the nature of the WKB potential

changes (figure 11). Bound states are no longer possible. The zero energy WKB solution is

ΨWKB(ν̃, u) = A+
1

V1/4
exp

(
∫ u

∞

√
V du

)

+ A−
1

V1/4
exp

(

−
∫ u

∞

√
V du

)

. (4.23)

The relation between the two coefficients is determined by matching to the wavefunction

at large u, where the potential decays exponentially and the wavefunction is a modified

Bessel function (see appendix B). We find that

A+ = iA−. (4.24)

The aymptotics of this solution near the boundary at u = ǫ (B.25) allows to compute the

boundary action and the Green’s function

G̃R(ν̃) ≈ lim
ǫ→0

iMR exp(SI) = iMR exp

(

2

∫ ǫ

∞

√

V(ν̃, u) du

)

. (4.25)

In terms of elliptic functions the explicit form for the WKB action is

SI = − MR
√

1 + 2r̃2h

(

|ν̃|(F
(

csc−1 √a, a
b

)

−
√

b

a
K

(

b

a

)

− 1

|ν̃| (1 + r̃2h)

√

b

a
Π

(

a
∣

∣

b

a

))

− 1

2
MR

(

ln

(

2ǫ−2

|ν̃|
√

1 + r̃2h

)

+ i π

)

,

(4.26)
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Figure 13. The analytic structure of the boundary Green’s function in the “ bubble of nothing”

phase in the WKB approximation ν → ∞, MR→ ∞ with ν̃ = ν/MR fixed. Approximately equally

spaced simple poles on the real axis for ν̃2 > r̃2
h
, are accompanied by branch points at ν̃ = 0 and

infinity.

and the only singularity of this expression is the logarithmic singularity at ν̃ = 0 which

complements the singularity at ν̃ = ∞ found above.

The resulting analytic structure of the Green’s function is summarized in figure 13,

which is to be contrasted with corresponding Green’s function (at large mass and frequency)

in the topological black hole phase in figure 6. As already dicussed earlier, the isolated

poles on the real axis indicate glueball states and that the gauge theory is in the confined

phase, wherein the radius of the spatial S1 is much smaller than the dS3 radius of curvature.

This may be interpreted as a hadronized phase, the de Sitter temperature being too low

for the degrees of freedom to be deconfined. In this context, we should point out that

the high frequency WKB analysis, where the frequencies are much larger than the de

Sitter cosmological constant, is basically a flat space limit and thus the singularities of the

Green’s functions may be interpreted in the standard way as in flat space. One feature

of the propagator in the bubble-of-nothing phase whose origin is not entirely clear is the

branch point singularity at ν̃ = 0. A similar branch point at ν̃ = −i was encountered

in the high frequency limit in the topological black hole phase. The associated branch

cut was a consequence of the apparent merger of the infinite set of quasinormal poles

of the topological black hole, in the high frequency limit. We do not know of a similar

interpretation of the branch cuts of (4.26) and figure 13.

5 Summary and discussion

In this paper, we have studied real time correlators in strongly coupled N = 4 SUSY Yang-

Mills theory on a time-dependent background, namely dS3 × S1. In particular, we have

calculated the retarded scalar glueball correlators and the R-charge current correlators in

the ZN -invariant phase.

The retarded scalar glueball correlators have an infinite number of poles in the lower

half of the complex frequency plane, which represent the topological black hole quasinor-
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mal frequencies. The imaginary parts of these correlators are associated to the Gibbons-

Hawking temperature due to the cosmological horizon of dS3. These two facts suggest that

the ZN symmetric phase of the boundary field theory corresponds to a deconfined plasma

in the exponentially expanding universe.

We also computed the retarded correlators for the spatial spherical harmonics of the

conserved R-currents using the Son-Starinets approach. Here we encountered a subtle point

wherein we had to include in our mode expansions, the effects of real, normalizable, discrete

solutions to the de Sitter mode equations, in order to obtained a retarded Green’s function.

The corresponding frequency space correlator, appropriately defined in de Sitter space, also

has an infinite number of poles in the lower half of the complex frequency plane, but these

do not appear to correspond to diffusive poles. The lack of hydrodynamic behavior of the

system is presumably due to the fact that the expansion rate of dS3 is of the same order

as the Gibbons-Hawking temperature. Here, we did not calculate the correlators of the

stress-energy tensor. However, using the same argument as above, we expect not to find

any hydrodynamic poles there either.

In this paper, we have also calculated the retarded correlators of scalar operators

O∆, with conformal dimension ∆ ≫ 1, in both the ZN -invariant phase and ZN broken

bubble phase. Unlike the correlators of the ZN symmetric phase, the correlators in the ZN

broken phase feature an infinite number of poles on the real frequency axis. These poles

are naturally associated to bound glueball-like states, which suggests that this phase is a

hadronized phase, where the de Sitter temperature is too low to deconfine the degrees of

freedom (the Hubble parameter is low compared to the dynamical scale of the effective,

non-SUSY 3d theory on dS3). Since this geometry contains no horizon, Son-Starinets

prescription [27] is not applicable in this phase and we have restricted ourselves to the high

frequency and large mass regime by using WKB approximation. Since the prescription

proposed by Skenderis and van Rees [25, 26] does not rely on the existence of horizons in

the geometry, it would be interesting to see whether one can obtain the retarded correlators

beyond the high frequency limit using this prescription.

It is also interesting to note that the relevant boundary condition on the horizon as

prescribed by Son and Starinets [27] implies that the boundary theory is in the Euclidean

or Bunch-Davies vacuum. This is in agreement with ref. [6], where it was argued that due

to the fact that the α-vacua Wightman functions for the topological black hole develop

singularities on the event horizon, the preferred vacuum for the boundary field theory is

the Bunch-Davis vacuum. It would be interesting to see whether one can understand the

issue of α-vacua ambiguity better by applying the Skenderis-van Rees prescription [25, 26]

to this set-up.
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A Boundary action for bulk Maxwell fields

A.1 Nonvanishing S1 momentum

We provide here, the steps in the calculation leading to the boundary action for fluctuations

which are homogeneous on the spatial slices of dS3 but with momentum along the spatial

S1. The equations of motion (3.55a),(3.55b) can be solved in terms of hypergeometric

functions

F ′
n = Cτ (ν, n̄) (1 − z)−i(ν−i)/2

2F1

(

1

2
+
i

2
(n̄− ν) ,

1

2
− i

2
(n̄+ ν) ; 1 − iν ; 1 − z

)

. (A.1)

Here Cτ is a frequency dependent constant, to be determined by the boundary values of

the fields. Near the boundary of AdS space, the solution approaches

F ′
n

∣

∣

z→0
= − Cτ

Γ(1 − iν)

Γ
(

1
2 + i

2(n̄− ν)
)

Γ
(

1
2 − i

2(n̄+ ν)
)×

×
(

2γE + ln z + ψ

(

1

2
+
i

2
(n̄− ν)

)

+ ψ

(

1

2
− i

2
(n̄+ ν)

))

.

(A.2)

Imposing the boundary conditions at z → 0

lim
ǫ→0

Fn(ν, ǫ) = F0
n(ν), lim

ǫ→0
Gn(ν, ǫ) = G0

n(ν), (A.3)

from (3.54b) we find that

Cτ (ν, n̄) = −Γ
(

1
2 + i

2(n̄− ν)
)

Γ
(

1
2 − i

2(n̄+ ν)
)

4Γ(1 − iν)

(

n̄2F0
n(ν) − RAds

rχ
n̄(ν − i)G0

n(ν)

)

.

(A.4)

With the normalization fixed in terms of the boundary values of the relevant fields we have

that

F ′
n(ν, ǫ) =

1

4

(

n̄2F0
n − RAdS

rχ
n̄(ν − i)G0

n

)

×
(

2γE + ln ǫ+ ψ

(

1

2
+
i

2
(n̄− ν)

)

+ ψ

(

1

2
− i

2
(n̄+ ν)

))

.

(A.5)

From (3.54a) we also obtain

G′
n(ν, ǫ) =

rχ
RAdS

ν + i

n̄
F ′

n(ν, ǫ). (A.6)

We can now plug these solutions into the boundary action to obtain the retarded R-current

correlators. Following identical steps for the normalizable (in time) modes, we have

FN′
n (ǫ) =

1

4
n̄2FN0

n

(

2γE + ln ǫ+ ψ

(

1 +
i

2
n̄

)

+ ψ

(

1 − i

2
n̄

))

. (A.7)

The induced boundary action for bulk Maxwell fields has the form

S
∣

∣

z=ǫ
=

4π

g2
SG

∑

n

1

2π
×

(∫ ∞

−∞

dν

2π

(

rχF0
−n(−ν) F ′

n(ν)
∣

∣

z=ǫ
− R2

AdS

rχ
G0
−n(−ν) G′

n(ν)
∣

∣

z=ǫ

)

+rχFN0
−nFN′

n

∣

∣

z=ǫ

)

,

(A.8)
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where g2
SG = 16π2RAdS/N

2. The complete real time retarded correlation functions for the

R-currents, can now be accessed readily. First we define the boundary values of our gauge

fields as

Aχ,τ (ǫ, τ, χ) ≡
∑

n

einχ

2π
An

χ,τ (τ) , (A.9)

so that

G0
n(−ν) =

∫ ∞

−∞
An

χ(τ)Tχ(ν, τ) cosh2 τ. (A.10)

and similarly

F0
n(−ν) =

∫ ∞

−∞
An

τ (τ)Tτ (ν, τ) cosh2 τ , FN0
n =

∫ ∞

−∞
An

τ (τ)T N
τ (τ) cosh2 τ . (A.11)

Putting these ingredients together, we find that the boundary action is

S
∣

∣

z=ǫ
=

N2

4πRAdS

∑

n

1

2π

∫ ∞

−∞
dτ cosh2 τ

∫ ∞

−∞
dτ ′ cosh2 τ ′

[∫ ∞

−∞

dν

2π

(

2γE + ln ǫ+ ψ

(

1

2
+
i

2
(n̄− ν)

)

+ ψ

(

1

2
− i

2
(n̄ + ν)

))

×

×
(

A−n
τ (τ)An

τ (τ ′)
n̄2

4
rχ Tτ (ν, τ)Tτ (−ν, τ ′) − A−n

τ (τ)An
χ(τ ′)RAdS

n̄

4
(ν − i)×

×Tτ (ν, τ)Tχ(−ν, τ ′) − A−n
χ (τ)An

τ (τ ′)RAdS
n̄

4
(ν + i)Tχ(ν, τ)Tτ (−ν, τ ′)+

+A−n
χ (τ)An

χ(τ ′)
R2

AdS

rχ

1

4
(ν2 + 1)Tχ(ν, τ)Tχ(−ν, τ ′)

)

+ rχA
−n
τ (τ)An

τ (τ ′)×

× n̄
2

4
T N(τ)T N(τ ′)

(

2γE + ln ǫ+ ψ

(

1 +
i

2
n̄

)

+ ψ

(

1 − i

2
n̄

))]

.

(A.12)

A.2 Nonzero momentum along the spatial slices of dS3

Below we fill in the steps in the derivation of the boundary action for the Maxwell fields

in the bulk. The asymptotic form of the radial dependence of the bulk potential F ′
ℓ, can

be determined from (3.72)

Fℓ

∣

∣

z→0
= Cℓ(ν) (C1(ν) +C2(ν) ln z) , (A.13)

where

C1 = −2γE + ψ(1 − iν
2 ) + ψ(− iν

2 )

Γ(1 − iν
2 )Γ(− iν

2 )
, (A.14a)

C2 = − 1

Γ(1 − iν
2 )Γ(− iν

2 )
. (A.14b)

We can solve for Cℓ in terms of the boundary values of the gauge potentials, using the bulk

equation of motion (3.65b) for F ′
ℓ near the boundary which yields

4

∫ ∞

−∞

dν

2π
Γ(1 + iν)P−iν

ℓ (tanh τ) Cℓ(ν) C2(ν) = ℓ(ℓ+ 1)
(

F0
ℓ (τ) − ∂τG0

ℓ (τ)
)

. (A.15)
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Note that the other equation of motion (3.65a) for G′
ℓ, just yields the time derivative of this

condition, so that we have only one equation to determine the coefficient Cℓ. This equation

can be solved if we recall that the associated Legendre functions are mutually orthogonal3

∫ ∞

−∞
dτ P iν

ℓ (tanh τ)P−iν′

ℓ (tanh τ) =
δ(ν − ν ′)

Γ(1 − iν)Γ(1 + iν)
. (A.16)

Thus, we have

Cℓ =
ℓ(ℓ+ 1)

4C2
Γ(1 − iν)

∫ ∞

−∞
dτ ′
(

F0
ℓ (τ ′) − ∂τ ′G0

ℓ (τ ′)
)

P iν
ℓ (tanh τ ′) (A.17)

from which we obtain the solution

cosh2 τ F ′
ℓ(ǫ, τ) =

ℓ(ℓ+ 1)

4

∫ ∞

−∞
dτ ′
(

F0
ℓ (τ ′) − ∂τ ′G0

ℓ (τ ′)
)

[ ∫ ∞

−∞

dν

2π

πν

sinhπν
P−iν

ℓ (tanh τ)P iν
ℓ (tanh τ ′)

(

ln ǫ+2γE +ψ

(

− iν

2

)

+ψ

(

1− iν

2

))

+
ℓ
∑

m=1

m
(ℓ−m)!

(ℓ+m)!
Pm

ℓ (tanh τ)Pm
ℓ (tanh τ ′)

(

ln ǫ+2γE + ψ

(

m

2

)

+ψ

(

1+
m

2

))]

.

(A.18)

Plugging these back into the expression for the boundary action (3.75), we obtain the

generating functional for two point correlators of R-currents.

B WKB matching conditions

We explain below the matching conditions at the turning point(s) of the WKB potential

for the Schrödinger equation (4.9a) in the AdS bubble of nothing background.

B.1 WKB matching conditions for ν > r̃h

Near the turning point u = uc corresponding to ρ =
√

1 + ν2, since we are well away from

any extrema, we can assume that

V(ν, u) = κ(uc − u) + . . . , u→ uc. (B.1)

In this region where the potential is basically linear, the exact solution in terms of Airy

functions is

Ψ
∣

∣

u→uc
= A+

2
√
π

κ1/6
Ai
(

κ1/3(uc − u)
)

+A−

√
π

κ1/6
Bi
(

κ1/3(uc − u)
)

. (B.2)

The normalizations and constants of integration have been chosen carefully so that the

exact solution near the turning point, in terms of Airy functions, matches the WKB solu-

tion (4.12) in Region I (u < uc) away from the turning point. Now, we can continue the

3The orthogonality of these functions for purely imaginary order follows from the fact that they are

eigenfunctions of the Schrödinger equation in the sech2 potential,
“

−
d2

dτ2 − ℓ(ℓ + 1)/ cosh2 τ
”

P iν
ℓ (tanh τ ) =

ν2P iν
ℓ (tanh τ ). In particular for ν ∈ R, these are scattering states and are delta-function normalizable, and

the eigenfunctions corresponding to two different eigenvalues are orthogonal as usual.
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solution (B.2) into Region II (u > uc). For u > uc, where the WKB solution (4.16) should

be valid, the Airy functions have the asymptotic form

Ψ
∣

∣

u>uc
≈ 2A+

sin
(

2
3

√
κ(u− uc)

3/2 + π
4

)

κ1/4(u− uc)1/4
+A−

cos
(

2
3

√
κ(u− uc)

3/2 + π
4

)

κ1/4(u− uc)1/4
. (B.3)

Comparison with (4.16) near the turning point then implies

B+ = ei
π
4

(

1

2
A− − iA+

)

; B− = e−i π
4

(

1

2
A− + iA+

)

. (B.4)

There is yet another condition that emergies from the behaviour of the solutions near the

second “turning point”, ρ →
√

1 + r̃2h or u → ∞ where the space ends. In this region

we have

du

dρ

∣

∣

ρ→
√

1+r̃2
h

≈ −

√

1 + r̃2h

2(2r̃2h + 1)(ρ−
√

1 + r̃2h)
(B.5)

so that

ρ−
√

1 + r̃2h ≈ 2
√

1 + r̃2h exp



−2
(1 + 2r̃2h)
√

1 + r̃2h

u+
r̃h

√

1 + r̃2h

cot−1





√

1 + r̃2h

r̃h







 . (B.6)

It follows then that, as a function of u, the high frequency potential decays exponentially,

V(ν, u)
∣

∣

u→∞ ≈ (MR)2
(

1 − ν2

r̃2h

)

exp



−2
(1 + 2r̃2h)
√

1 + r̃2h

u+ constants



 . (B.7)

Note that for ν > r̃h, the potential approaches zero from below. Let us define constants A

and B, in terms of which the potential is simply

Ṽ0(ν, u)
∣

∣

u→∞ ≈ −Ae−Bu, (B.8)

where A and B can be read off easily from the expressions above. The Schrödinger equation

with an exponentially decaying potential is solved exactly by Bessel functions:

−Ψ′′(u) −Ae−BuΨ(u) = 0,

Ψ = C1 J0

(

2

√
A

B
e−Bu/2

)

+C2 Y0

(

2

√
A

B
e−Bu/2

)

. (B.9a)

Recall that we are looking for a zero energy eigenfunction of the Schrödinger problem.

This means that for a potential that vanishes at infinity, the corresponding (normalizable)

wavefunction can only be zero. This is an important difference to the black hole case

where the wave functions are infalling plane waves at the horizon. Requiring that the wave

function Ψ vanish or approach a constant as u→ ∞ then eliminates the term proportional

to Y0. Hence, in the exponentially decaying region

Ψ(u) ∝ J0

(

2

√
A

B
e−Bu/2

)

. (B.10)
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The WKB approximation should match onto the Bessel function for large values of the

argument of the Bessel function. Using the standard asymptotic expansion for Bessel

functions

J0(x)
∣

∣

x≫1
≃ cos(x)√

πx
+

sin(x)√
πx

. (B.11)

From this we can deduce a relationship between the constants B+ and B− in (4.16). To

make this precise we define the integral

SII(u) =

∫ u

∞

√

|V(ν, u)| du. = −MR

∫ ρ2−1

r̃h

dx

√

x2 − ν2

(x2 − r̃2h)(x2 + 1 + r̃2h)
(B.12)

where

SII(u(ρ)) =i
MR

√

1 + 2r̃2h

[

ν

(

F

(

sin−1

√

1

a

ρ2 + r̃2h
ρ2 − 1

, k

)

− 1√
k
K

(

1

k

))

+

+
1

ν
(1 + r̃2h)

(

Π

(

a; sin−1

√

1

a

ρ2 + r̃2h
ρ2 − 1

∣

∣

∣

∣

k

)

− 1√
k

Π

(

b
∣

∣

1

k

))

]

,

a =
ν2 + 1 + r̃2h

ν2
; b =

1 + 2r̃2h
r̃2h

; k =
a

b
.

(B.13)

Then the WKB solution in Region II is

ΨWKB =
1

|V|1/4

(

B+ eiSII(u)−iSII(uc) +B−e
−iSII(u)+iSII(uc)

)

. (B.14)

For large u,

SII(u)
∣

∣

u≫1
≈
∫ u

∞

√
Ae−Bu/2 = −2

√
A

B
e−Bu/2. (B.15)

Using this result and comparing (B.14) to the asymptotics of the Bessel function (B.11),

we find
B+

B−
= ie2i SII(uc). (B.16)

The final ingredient consists in determining A+ and A−. To this end we first define

SI(u) =

∫ u
√

V(ν, u) du, (B.17)

which then gives us

SI(u(ρ)) =
MR

√

1 + 2r̃2h

[

νF

(

sin−1

(

√

1

a

ρ2 + r̃2h
ρ2 − 1

)

, k

)

+
1

ν
(1 + r̃2h)Π

(

a; sin−1

(

√

1

a

ρ2 + r̃2h
ρ2 − 1

)∣

∣

∣

∣

k

)

]

,

a =
ν2 + 1 + r̃2h

ν2
; b =

1 + 2r̃2h
r̃2h

; k =
a

b
.
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Near the boundary u→ 0 or equivalently ρ→ ∞, we find

ΨWKB ≈ A−
1√
MR

ρMR− 1
2 eiπMR/2

(

4

1 + r̃2h

)MR/4

ν−MR/2×

exp





MR
√

1 + 2r̃2h

(

ν(F
(

csc−1 √a, k
)

−K(k)) − 1

ν
(1 + r̃2h) Π(a|k)

)





+ A+
1√
MR

ρ−MR− 1

2 e−iπMR/2

(

4

1 + r̃2h

)−MR/4

νMR/2×

exp



− MR
√

1 + 2r̃2h

(

ν(F
(

csc−1 √a, k
)

−K(k)) − 1

ν
(1 + r̃2h) Π(a|k)

)



 .

(B.18)

Combining (B.4) and (B.16) we obtain

A+ = −A−
1

2
tan (SII(uc)) . (B.19)

B.2 WKB matching for |ν| < r̃h

When |ν| < r̃h, the potential energy V(ν, u) is a monotonic function of u which exponen-

tially vanishes as u → ∞. Now, the potential has effectively only one turning point and

the wave function has no region where it propagates. The WKB solution (4.12) in Region

I should smoothly match onto the exact solution of

− ψ′′(u) +Ae−Buψ(u) = 0 , A,B > 0. (B.20)

The solutions to these are the modified Bessel’s functions. Enforcing regular behaviour as

u→ ∞ picks out

ψ(u) ∝ I0

(

2

√
A

B
e−Bu/2

)

. (B.21)

The WKB approximation for I0(x) is valid when x≫ 1,

I0(x)
∣

∣

x≫1
≃ 1

2
√

2πx

(

ex + ie−x
)

. (B.22)

We write the WKB solution to the wave equation in the bubble of nothing background as

ΨWKB(ν, u) = A+
1

V1/4
exp

(
∫ u

∞

√
Vdu

)

+A−
1

V1/4
exp

(

−
∫ u

∞

√
Vdu

)

. (B.23)

Comparison with the modified Bessel function implies

A+ = iA−. (B.24)
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Near the boundary u→ 0, which is equivalent to ρ→ ∞, we have

ΨWKB ≈A−
1√
MR

ρMR− 1

2 eiπMR/2

(

4

1 + r̃2h

)MR/4

ν−MR/2×

exp





MR
√

1 + 2r̃2h

(

ν(F
(

csc−1 √a, k
)

− 1√
k
K

(

1

k

)

− 1

ν
(1+r̃2h)

1√
k
Π

(

a
∣

∣

1

k

))





+ A+
1√
MR

ρ−MR− 1
2 e−iπMR/2

(

4

1 + r̃2h

)−MR/4

νMR/2×

exp



− MR
√

1 + 2r̃2h

(

ν(F
(

csc−1 √a, k
)

− 1√
k
K

(

1

k

)

− 1

ν
(1+r̃2h)

1√
k
Π

(

a
∣

∣

1

k

))



 .

(B.25)
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